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Abstract

Software engineering companies strive to improve software quality by predicting

software defects-prone modules. Although various data mining methods have been

developed, unstable accuracy rates are still critical issues owing to the imbalanced

nature and high dimensionality of software defect datasets. To deal with this issue,

we propose a spotted hyena, a novel meta-heuristic optimization algorithm for

predicting software defects. Support and confidence in classification rules are the

basis of a multi-objective fitness function that assists the spotted hyena algorithm in

serving as a classifier by finding the fittest classification or standard rules among indi-

viduals. Experiments were conducted on four NASA software datasets, JM1, KC2,

KC1, and PC3. The spotted hyena classifier provides an accuracy of 85.2, 84, 89.6,

and 81.8%, respectively, for these datasets. These accuracy rates are better than

those achieved using other popular data mining techniques. We also discuss other

classification measures in connection with the experimental results, such as precision,

recall, and confusion matrices, in connection with the experimental results. More-

over, the Gaussian mixture model is used to study the uncertainty quantification of

the proposed classifier. The study proved the feasible performance of the spotted

hyena classifier in four different case studies.
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1 | INTRODUCTION

Software engineering demands high quality and reliability to fulfil user requirements at a limited time. Software defect prediction (SDP) models

can assist quality assurance teams in investigating and testing software products using an effective allocation of limited resources (Raukas, n.d.;

Nam, 2014).

Initially, software companies used manual testing to detect defects. These required 27% of a project's effort and could not address all soft-

ware defects. Software companies often do not have the necessary stuff and time to remove all faults before product release. This has a negative

impact on company reputations and overall product quality. SDP models can assist these companies in solving critical problems and allocating

resources to the most defect-prone code (Raukas, n.d.).

Many techniques have been used in predicting software defects, such as Naïve Bayes (NB; Okutan & Yıldız, 2014), bagging (Kuncheva

et al., 2002), boosting (Aljamaan & Elish, 2009), support vector machines (SVMs; Shan et al., 2014), and C4.5 (Koru & Liu, 2005).
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Moreover, recent studies have recommended data mining methodologies that are using machine learning (ML) as important models. Detec-

tion accuracy is the most challenging issue for SDP models (Jayanthi & Florence, 2019). Previous experience and studies can assist in predicting

defects in software products.

Our research uses the spotted hyena optimizer (SHO; Dhiman & Kumar, 2017; Kumar & Kaur, 2020), a novel meta-heuristic algorithm, as a

classifier for foreseeing faults in within-project (training and testing phases in the same project; Elsabagh et al., 2020). The principal idea of the

SHO is the behaviour of spotted hyenas. Support and confidence are used as a Multi-Objective Fitness Function (MOF) to locate the fittest classi-

fication rules during the experiments. This improves classification accuracy in predicting software defects. Ultimately, this can assist companies in

enhancing quality, effort, time estimation, reliability checking, and risk reduction during development.

The research contribution is devoted to improving SDP in within-projects that suffer from various challenges such as detection accuracy and

precision (Kaur & Sharma, 2018). The paper proposes the SHO algorithm as a classifier that iterates to find the optimal individuals learning from

training data (60% percentage of the NASA software dataset). The classification model is a set of if-then rules used to detect defects on unseen

instances during the test process on the rest of the dataset (40%). Besides, accuracy and precision scores are computed and compared with litera-

ture data mining techniques using the WEKA tool (Witten et al., 2016). Finally, uncertainty quantification (UQ; Abdar et al., 2021; Kompa

et al., 2021) study using Gaussian mixture model (GMM; Shafiullah et al., 2020) is implemented to measure the amount of uncertainty in the SHO

classifier output. Using the SHO algorithm is a novelty particularly in within- projects software defect detection according to our search before

beginning the experiments.

The rest of the paper is organized as follows. Section 2 surveys recent defect prediction models. Section 3 describes the mathematical equa-

tions used in the SHO. The proposed classifier is presented in Section 4. Section 5 discusses our experimental studies. Section 6 concludes and

discusses future work.

2 | RELATED WORK

Meta-heuristic algorithms (Gandomi et al., 2013) are optimization techniques that tend to merge randomization, local search, and global explora-

tion to find a feasible and efficient solution to complicated problems quickly. These algorithms got great interest from researchers in different

fields like feature selection, classification, and optimization problems. Table 1 lists abstracted comparison between meta-heuristic algorithms men-

tioned in this section.

Pourpanah et al. (2016) utilized meta-heuristic algorithms for data classification. They use a Fuzzy ARTMAP classifier with Q-learning during

the training process and a genetic algorithm (GA) for rule extraction. The hybrid model provides the prediction for the target class in addition to a

fuzzy if-then rule to explain the prediction.

Das and Saha (2021) used six algorithms (Whale Optimization Algorithm, Eagle Perching Optimization, Dragonfly Algorithm, Flower Pollina-

tion Algorithm, Bird Swarm Algorithm, and Firefly Algorithm) for real-life structural health monitoring They utilized real-life quarter-scaled ASCE-

Benchmark structure using stiffness-based fitness. The performance of all the algorithms is relatively good except for BSA and FA because of local

optima.

Pławiak Pawełand Abdar et al. (2020) proposed Deep Genetic Hierarchical Network of Learners (DGHNL) for credit scoring. They utilized

several learners including Support Vector Machines, k-Nearest Neighbours, Probabilistic Neural Networks, and fuzzy systems. DGHNL model with

a 29-layer achieved the prediction accuracy of 94.60% for the Statlog German credit approval data.

Eid et al. (2021) addresses multi-objective water cycle algorithm (MOWCA) for truss optimization problems employing the real-world water

cycle. The results were compared with various literature algorithms. The proposed technique has an excellent performance in optimizing multi-

objective and truss problems.

Abdar et al. (2019) diagnosed coronary artery disease (CAD) by a nested ensemble nu-Support Vector Classification (NE-nu-SVC) that com-

bines several conventional ML strategies and outfits learning strategies for the compelling conclusion of CAD. They approved the model utilizing

two well-known CAD datasets (Z-Alizadeh Sani and Cleveland). The NE-nu-SVC model gives the most noteworthy exactness of 94.66% and

98.60% within the Z-Alizadeh Sani and Cleveland CAD datasets.

Predicting software defects is an interesting research topic in software engineering. It plays a vital role in assisting software engineers and

developers in accelerating marketing time and producing more valuable software. Many researchers have recently taken an interest in predicting

software defects. This section discusses common related work on that topic.

Dam et al. (2018) presented a model for predicting software defects by automatically learning features that represent a module and using

them for defect prediction. Their prediction system is built on a tree-structured long short-term memory network matched with an abstract syntax

tree source code representation for powerful deep learning.

Hammouri et al. (2018) presented a model for predicting software defects using ML algorithms. Basing their method on historical data for

predicting future software defects, they used three supervised ML algorithms, artificial neural networks (ANNs), Decision Trees (DTs), and NB.
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Jayanthi and Florence (2019) proposed an approach based on feature reduction. They applied principal component analysis (PCA) enhanced

by the estimation of maximum likelihood to reduce errors in PCA and an ANN as a classifier to predict future defects.

Singh and Chug (2017) analysed the widely used and most well-known ML algorithms, such as NB, Particle Swarm Optimization (PSO), linear

classifiers (LCs), ANNs, and DTs, using KEEL and validated them using the technique of k-fold validation.

Wei et al. (2019) approached the problem of predicting software defects by using a model based on the SVM algorithm as the basic classifier.

The parameters of the model are optimized by using a 10-fold cross-validation and grid search method.

Xu et al. (2016) noticed that conventional techniques used feature reduction schemes to reduce irrelevant metrics (features), but that some

metrics were still important and influenced performance in predicting software defects. To face this challenge, they used the correlation technique

of maximal information and computed from the selected features followed by clustering at a later stage.

Kumar et al. (2014) proposed two classifiers for predicting defects using asymmetric kernel PCA and partial least squares, applying them using

a kernel function with SOFTLAB on NASA datasets.

Elsabagh et al. (2020) optimized an ML classifier to predict defects in cross-projects. The classifier is trained on projects available in the NASA

dataset, and then the classification model is used on different or new projects. That research assisted in detecting software defects when insuffi-

cient historical data was available.

TABLE 1 Comparison between some meta-heuristic algorithms and their applications in literature

# Reference and year Application Meta-heuristic optimization algorithm Task results

1 (Pourpanah et al., 2016) Data Classification ARTMAP classifier with Q-learning and

Genetic Algorithm (GA)

The experimental result

emphatically illustrates the

potential effect of QFAM-GA

within the real-life environment

2 (Das & Saha, 2021) Health Monitoring Whale Optimization Algorithm, Eagle

Perching Optimization, Dragonfly

Algorithm, Flower Pollination Algorithm,

Bird Swarm Algorithm and Firefly

Algorithm

The performance of all the

algorithms is relatively good

except for BSA and FA because

of local optima.

3 (Pławiak Pawełand Abdar

et al., 2020)

Credit Scoring Deep Genetic Hierarchical Network of

Learners (DGHNL)

Prediction accuracy of 94.60% for

the Statlog German credit

approval data.

4 (Eid et al., 2021) Optimization Multi-Objective Water Cycle Algorithm

(MOWCA)

The proposed technique has an

excellent performance.

5 (Abdar et al., 2019) Diagnosis of Coronary

artery disease (CAD)

nu-Support Vector Classification (NE-nu-

SVC)

The exactness of 94.66% and

98.60% within the Z-Alizadeh

Sani and Cleveland CAD

datasets, respectively.

6 (Dam et al., 2018) Predicting software

defects

Deep Learning. A tree-structured long short-term

memory network matched with

tree source code

7 (Hammouri et al., 2018) Predicting software

defects

Artificial Neural Networks (ANNs), Decision

Trees (DTs) and NB.

Presented a model for predicting

software defects using Machine

Learning (ML) algorithms.

8 (Jayanthi & Florence, 2019) Predicting software

defects

Principal component analysis (PCA) & ANN Reduced errors to predict future

defects.

9 (Singh & Chug, 2017) Predicting software

defects

NB, Particle Swarm Optimization (PSO),

Linear Classifiers (LCs), ANNs, and DTs.

Used KEEL and validated by k-fold

validation.

10 (Wei et al., 2019) Predicting software

defects

SVM algorithm as a classifier. Parameters of the model are

optimized by 10-fold cross-

validation and grid search.

11 (Alaia et al., 2018) Optimization GA and PSO GA is superior to PSO, which gives

little advancement for clustered

populations.

12 (Kumar et al., 2014) Predicting software

defects

Asymmetric kernel PCA and partial least

squares.

Applying using a kernel function

with SOFTLAB on NASA

datasets.
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Khan (2020) used eight datasets to compare notable classifiers of hybrid ensembles and supervised learning. The results showed that bagging

and an AdaBoost SVM achieved high rates in accuracy, recall, an area under the curve, and F-measure.

Meta-heuristic techniques like genetic algorithms (GA; Hosseinabadi et al., 2019) and particle swarm optimization (PSO; Bansal, 2019) are

also widely used for optimization and data mining in literature. Both strategies start with an arbitrary population and use a fitness function to

assess. PSO begins from an initial swarm and utilizes cooperation to find the best solution where GA utilizes genetic operations. (Alaia

et al., 2018) compared GA and PSO implementation in an optimization problem. They concluded that GA is the favourable approach although that

it endures a few issues. It is troublesome to decide the foremost compelling crossover methodology in advance. Moreover, through its genetic

processes, weak solutions may proceed to be the portion of the cosmetics of future candidate arrangements. In their experiment, GA is superior

to PSO, which gives little advancement for clustered populations. Compared with GA, the points of interest of PSO are that it is simple to actual-

ize and there are few parameters to alter.

The previous comparison between GA and PSO pushed us to use new meta-heuristic techniques to avoid their difficulties. SHO is an efficient

meta-heuristic algorithm that requires fewer operators and hence simple implementation. During several comparisons in our experiment, SHO

obtained the most optimal solutions at a limited time, high efficiency, and low complexity.

The literature work presents the need for defect prediction in the beginning periods of the SDLC. The related work still struggles from preci-

sion and accuracy according to (Kaur & Sharma, 2018). The proposed SHO classifier is devoted to improving SDP in projects that suffer from low

detection accuracy and precision (Kaur & Sharma, 2018). This paper compares the proposed model results with the most popular data mining

techniques found in literature work. The comparisons are illustrated using different NASA projects by the WEKA mining tool (Witten et al., 2016)

in the experimental results subsection. In addition, the paper introduces a novel artificial intelligent algorithm. The proposed model advantages

the capabilities and intelligence of the spotted hyena in modelling a new data mining classifier. The next section discusses the SHO algorithm.

3 | SHO ALGORITHM

Meta-heuristic techniques are divided into three categories, swarm, evolutionary, and physical-based (Ren et al., 2014). SHO (Dhiman &

Kumar, 2017) is a novel meta-heuristic and is implemented in three steps, searching for, encircling, and attacking prey. This algorithm is compared

here with 29 well-known testing functions and eight recently developed algorithms (Dhiman & Kumar, 2017). The results show that SHO performs

better than the other meta-heuristic techniques. SHO can reach the optimal solution in a limited time with high efficiency and low

complexity(Dhiman & Kumar, 2017; Kumar & Kaur, 2020). The following subsections explain the mathematical equations used in the spotted hyena.

3.1 | Mathematical model of encircling

Dhiman and Kumar (2017) modelled the social chain of spotted hyenas mathematically. Since spotted hyenas are familiar with the location of their

prey, the prey can be encircled. They considered the current most feasible competitor solution as the objective prey or target. This present best is

assumed to be close to the perfect as the search area was not known previously. The other individuals are expected to change their locations

according to the most feasible search competitor solution. The following equations represent the encircling of prey mathematically:

D
!

h ¼ B
!� P

!
p xð Þ� P

!
xð Þ

���
��� ð1Þ

P
!

xþ1ð Þ¼ P
!

p xð Þ� E
!�D

!
h ð2Þ

where D
!

h characterizes the separation between the prey and hyena, B
!
and E

!
are coefficients, � is the multiplication operation, x shows the cur-

rent iteration, P
!

p shows the prey position, and P
!
is the spotted hyena position. jj represents the absolute value.

B
!
and E

!
are calculated as follows:

B
!¼2� rd

!
1 ð3Þ

E
!¼2h

!� rd
!

2� h
! ð4Þ

h
!¼5� iteration� 5 � Maxiterationð Þð Þ ð5Þ

where iteration¼1,2,3…,Maxiteration:
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h
!

decreases from five: 0 through Maxiteration, and rd
!

1, rd
!

2 are random vectors between zero and one.

3.2 | Mathematical model of chasing

Hyenas typically chase in groups, relying on a system of companions and the capacity to perceive the area in which prey are located (Dhiman &

Kumar, 2017). The following equations represent the hunting of prey mathematically:

D
!
h ¼j B!� P

!
h� P

!
k j ð6Þ

P
!
k ¼ P

!
h� E

!�D
!
h ð7Þ

C
!

h ¼ P
!

kþ P
!
kþ1þ…þ P

!
kþN ð8Þ

where P
!
h characterizes the position of the first feasible hyena, and P

!
k represents other hyenas. N is the number of hyenas, calculated as follows:

N¼ countnos P
!

h, P
!
hþ1, P

!
hþ2,…, P

!
hþMÞÞ��!��

ð9Þ

where M
!

a random number between 0.5 and one, nos characterizes the number of solutions, and C
!
h is a set of N optimal solutions.

3.3 | Mathematical model of assaulting

Modelling assaulting mathematically requires reducing the h
!

value. The assortment in E
!

is also decreased to change the value of h
!
, which can

decrease from five to zero through cycles (Dhiman & Kumar, 2017). Equation (10) describes this phase mathematically:

P
!

xþ1ð Þ¼ C
!

h � N ð10Þ

where P
!

xþ1ð Þ saves the most feasible hyena and refreshes the positions of the others.

4 | OPTIMIZING CLASSIFICATION RULES BY SHO

Defect prediction is widely considered to be one of the most essential software engineering tasks. There are many real-life problems in software

engineering design, such as increasing complexity and efficiency, requiring meta-heuristic techniques for obtaining optimal solutions (Ren

et al., 2014). Section 2 explains briefly how SDP can be based on ML, but overall performance and accuracy classification is still challenging

(Kaur & Sharma, 2018).

To deal with this issue, our work optimizes if-then classification rules by a novel meta-heuristic optimization algorithm, SHO, based on the

conduct of spotted hyenas (Elsabagh et al., 2020) for within-project defect prediction.

Suppose that we have a pool of if-then rules where the conditional part of these rules is software engineering metrics, and the decision part

is whether defective or non-defective. Under appropriate circumstances, the search algorithm would find the optimal set of rules that forms the

classification model. But what are the appropriate circumstances? Here, we define them as the appropriate fitness function that helps the algo-

rithm to rationally select the optimal if-then rules from the perspective of the dataset (i.e., only select the rule that matches the largest number of

instances from the training data). First, we use a random pool of rules, and then we implement two fitness functions (MOF) to find the best rules.

The MOF is composed of the degree of support and confidence of the rules (explained in Section 4.1). These two functions measure how well the

rule represents the dataset. Hence, we could optimize the classification model using the SHO algorithm, which is selected upon its novelty and

efficiency.

SHO algorithm is an efficient optimizer for constrained and unconstrained engineering problems engineering (Dhiman & Kumar, 2017). The

problem of optimizing a classification model could be formatted as a constrained problem (i.e., find the optimal if-then rules which optimally match

the dataset understudy). Hence, we preferred to utilize the SHO as a meta-heuristic search algorithm.
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Figure 1 shows the data flow and major processes in the proposed classifier. The instances or objects are created from archives of software

such as version control. Each method, class, and file are represented by an instance, which is labelled as defective or not.

The datasets are discretized using RapidMiner 5.3 (Mierswa & Klinkenberg, 2018) because it is difficult to perform exact matching between

individuals (rules) of a population and the instances of datasets to calculate the MOF. A combination of the support and confidence degrees of the

generated rules serves as an MOF to evaluate suitable classification rules. The SHO algorithm iterates to locate the optimal individuals (rules)

based on a subset of the dataset with a percentage of 60% (training dataset). The remainder of the software dataset (40%) is saved for testing, in

which new instances are classified as defective or not. Based on the test results, a detailed output of algorithm accuracy, precision, sensitivity,

recall, specificity, and F-measure is reported. These measures are used for comparisons with other popular techniques found in the literature,

including C4.5, ANNs (Wang et al., 2017; Zhang et al., 2014), random forest, bagging, K-NN, SVMs, and NB. The following subsections summarize

the MOF and SHO classifier phases.

4.1 | MOF

An objective function (Deb, 2014) is also called an evaluation function. Such a function assesses how close a given solution is to the ideal solution

of the desired problem. It determines how to fit a solution is. This subsection describes support and confidence (Qodmanan et al., 2011) as the

objective functions during our experiments to locate the fittest standard rules. First, we calculate the support of the rule by the number of rows

that satisfy the standard rule. This is calculated as follows:

Support¼ COUNT_S=Rð Þ�100 ð11Þ

Second, the confidence of the rule is computed. This is the ratio of the total number of modules that fulfil the entire standard rule to the total

number of modules that satisfy the antecedent, calculated as follows:

Confidence¼ COUNT_S=COUNT_Cð Þ�100 ð12Þ

where COUNT_C is the total number of modules that satisfy the antecedent of the standard rule, COUNT_S is the total number of modules that

fulfil the standard rule, and R is the number of rows. Finally, the MOF for each rule is computed as follows:

MOF¼w1�Supportþw2�Confidence ð13Þ

where w1 andw2 are weights attached to the support and confidence based on their relative importance.

4.2 | SHO phases and flowchart as a classifier

This section summarizes the stages of the proposed classifier based on SHO and the MOF (support and confidence).

F IGURE 1 General model of software defect prediction (within projects) using spotted hyena optimizer as a classifier
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The hyena population is created, and the initial parameters are chosen as shown in Figure 2. TheMOF is applied for each instance of the spot-

ted hyena by using a combination of the support and confidence degrees of the generated population to evaluate the suitability of the rules of

the classification. Next, the location of each hyena is updated by learning from the hyena with the maximum MOF. Then, the SHO algorithm iter-

ates to find the optimal individuals based on a percentage of 60% (training data). The output of the training process that returns the classification

rules is used as input for the testing process on the remainder of the software dataset (40%) to predict and classify the new instances as defective

or not.

Our method also uses the steps shown in Algorithm 1 to implement the phases of the proposed SHO classifier. In addition, we answer the

question here of how to implement the SHO algorithm to classify and predict whether another test instance is defective using support and confi-

dence as the MOF.

The SHO algorithm iterates initially on a random population of rules to select the optimal set. Each rule is composed of conditional met-

rics and the class label. The main goal of SHO is to find the best set of rules that represent the dataset. The MOF (explained in Section 4.1) is

F IGURE 2 Spotted hyena optimizer classifier flowchart
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composed of support and confidence measures. These two measures calculate the matching between the rules and dataset instances. At the

end of iterations, the final population is processed to remove repetitions and extract the unique rule, which will represent the classification

model.

The test process decides of defective or not for new instances. The conditional metrics of these instances are input into the classification

model to find the rules that best match them. The rule label (class attribute) is compared to the target class which is the actual class of the

instance. The true positives, false positives, true negatives, and false negatives are calculated to measure the performance functions of the classifi-

cation model. These functions are the accuracy, precision, sensitivity, recall, specificity, and F-score which will judge the SHO algorithm in finding

the appropriate if-then rules (classification model).

First, the initial parameters are computed as shown in Equations 3, 4, and 5. The MOF for each spotted hyena of the population is calculated.

The MOF used during the process of optimization is the support and confidence, as shown in Equations 11, 12, and 13. This MOF supports SHO

by finding the fittest standard rules among initial individuals (randomly created rules). The SHO algorithm iterates to locate optimal individuals

and then characterizes the cluster of ideal solutions using Equations (8) and (9). The separation between the hyena and prey is characterized, and

the spotted hyena is updated. Then, the position and memory are updated by checking whether any hyena moves past the limit in the search area

Algorithm 1

Steps of the SHO classifier through the within-projects SDP

Input: nPop = 500, PD = 22 or 38, MaxIt = 50, Ds, Iteration = 0,

Output: Return the solution of the best classification.

1: Start proposed classifier

2: H = 5- (Iteration * [5/MaxIt])

3: E = 2*H*rand(PD,1)-H

4: B = 2*rand(PD,1)

5: pop = init (PD, nPop)

6: MOF = fitness_Psc(pop)

7: P
!
h= The best individual (classification rule) is investigated in the inquiry area.

8: C
!

h= Characterize the cluster of ideal solutions using Equations (8, 9).

9: For Iteration: Max-Iteration

10: current_fit = max(ft)

11: current_sol = H_best

12: For i = 1:n % for each hyena

13: D = j(BT.*H_best) – xj
14: xnew(i,:) = round j(H_best-(ET.*D) j
15: end For

16: Refresh E, B, and h.

17: for i = 1:n

18: for j = 1:PD-1

19: if xnewi,j < lj jj xnewi,j > uj

20: xni,j = xni,j;

21: else

22: xni,j = xnewi,j;

23: end

24: end

25: MOF = fitness_Psc

26: Refresh the vector P
!

h to check whether there is a more feasible individual than the previous one

27: Refresh the cluster of spotted hyenas C
!

h

28: Iteration = Iteration+1

29: end For

30: Return P
!
h

31: end proposed classifier
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and are changed if necessary. Then, the MOF and the new values of the coefficient vectors of the updated spotted hyena are calculated. The next

step is to refresh the cluster of spotted hyenas C
!

h and the vector P
!
h to determine whether a better solution than the previous one is produced.

Finally, the output of the proposed classifier returns the best individuals (classification rules).

5 | EXPERIMENTAL EVALUATION

This section explains the study of the SHO in SDP and how to assess the performance of this algorithm as a classifier based on support and

confidence.

5.1 | Experiment setup

These experiments are conducted using MATLAB R2016a (MATLAB, 2016), RapidMiner 5 (Mierswa & Klinkenberg, 2018), the open-source

datasets PROMISE (Software Defect Dataset: Promise repository, n.d.) and OPENML (OpenML, n.d.), and WEKA 3.6 (Witten et al., 2016) on a PC

with Intel(R) Core (TM) i5 CPU and 4 GB RAM.

In this experiment, we used NASA software datasets from the PROMISE and OPENML archives. NASA data is composed of various software

datasets. During experiments, we focused on JM1, KC2, KC1, and PC3. Distinctive features are available in the respective datasets. Table 2 dis-

cusses different parameters associated with the datasets including the number of attributes (software metrics), modules, defectives, and percent-

age of depicted defects. There are some software metrics coded in parameters like v(g), ev(g), iv(g), and so on. These metrics are used in JM1,

KC2, and KC1 datasets. We preferred to describe them separately in Table 3 (Elsabagh et al., 2020). There are some common metrics between

the four used datasets. Table 4 (Khan et al., 2021) lists the metrics category, name and the dataset. Using the datasets, we trained the SHO to

serve as a classifier for defect prediction. Accuracy classification is compared with that of popular techniques of data mining in WEKA 3.6.

A confusion matrix (Sammut & Webb, 2011) is a kind of table that is commonly used to depict classification model performance. Such a

matrix contains values of a predicted class and the associated actual class. Classifier results are determined using these values. One common con-

fusion matrix is shown in Table 5.

A confusion matrix facilitates computing different metrics of measurements for data mining algorithms, like accuracy, precision, sensitivity,

recall, specificity, and F-score. For example, accuracy (ACC) considers both true negative and positive overall instances. In other words, it is the

ratio of all instances that are characterized effectively. It is calculated as follows:

ACC¼ TPþTNð Þ= TPþTNþFPþFNð Þ ð14Þ

Another parameter is specificity (SP; true negative rate). This measures the extent of actual negatives that are identified correctly. It is calculated as follows:

SP¼TN= TNþFPð Þ ð15Þ

The next parameter is sensitivity (S). This is also called the probability of detection and recall. It measures the extent of actual positives that

are identified effectively. It is calculated as follows:

S¼TP= TPþFNð Þ ð16Þ

Then, the precision (P) of the proposed classifier is calculated as follows:

P¼TP= TPþFPð Þ ð17Þ

TABLE 2 Dataset details of software defect prediction (Elsabagh et al., 2020)

Dataset # attributes Module Defect Defect (%)

KC1 22 2109 326 15.5

KC2 22 522 107 20.5

PC3 38 1563 160 10.23

JM1 22 10,885 2106 19.34

ELSABAGH ET AL. 9 of 23



F_measure F_Mð ) is computed as follows:

F_M¼ 2�P�Sð Þ= PþSð Þ ð18Þ

Finally, the average (W__A) of every estimation is calculated and weighted using the following equation:

W__Aof F_M¼ F_Mc1�Nc1ð Þþ F_Mc2�Nc2ð Þð Þ=Nc1þc2 ð19Þ

where F_Mc1 and F_Mc2 are the F_measures for Classes 1 and 2, respectively. In addition, Nc1 and Nc2 are the numbers of rows in Classes 1 and

2, respectively. Nc1þc2 is the total number of rows. The weighted averages of the precision, sensitivity, recall, and specificity metrics can be calcu-

lated similarly to Equation (19).

The convergence rate (Cartis & Scheinberg, 2018) is another important performance measure of the proposed classifier. In evaluating iterative

optimization algorithms, convergence has defined as the sequence of solutions obtained through the iterations until it converges to an optimum

or satisfactory point. Less time is required to reach a good approximation if the convergence rate is high. This answers the question of how fast

the algorithms reach their best solution and how steady this solution remains.

UQ (Abdar et al., 2021; Kompa et al., 2021) right now supports numerous basic predictions, and expectations made without UQ are ordinarily not

dependable or precise. Uncertainty emerges for many reasons. Noise, data distribution, class overlapping, proposed model parameters and old data are

reasons for uncertainty. These reasons divide into two types. The first presents from the dataset characteristics. We deal with ML repositories that con-

tain standard datasets. These data may be incomplete, contain anomalous, not up-to-date, or even contradictory. These characteristics will certainly

affect the model's final decision. The uncertainty inherited from these characteristics is called aleatoric uncertainty. We could enhance the missing

values and remove anomalous and contradictory during preprocessing. Nevertheless, the data will still not up to date. In addition, the methods used dur-

ing preprocessing are statistical (i.e., we will give the data metrics estimated values not the real ones). Therefore, this type of uncertainty is unavoidable.

The second type is epistemic uncertainty (known as model instability). In the prediction framework, we must find a suitable solution for

preprocessing, training, and testing phases. In situations of large and inadequate datasets, we resort to AI-based methodologies to solve data

problems in all phases. These AI methods are different from each other in parameters and processing. Which model is the best for the dataset

under study? What are the appropriate values of the methodology parameters? Therefore, epistemic uncertainty arises (in other words the uncer-

tainty of the classifier used in experiments; Abdar et al., 2021).

TABLE 3 Attribute details of software defect prediction for KC1, KC2, and JM1 datasets

Attributes Description

Loc McCabe's total number of lines

v(g) ‘Cyclomatic measurements of complexity’

ev(g) ‘Essential complexity’

iv(g) McCabe ‘complexity of design’

N Halstead total operands + operators

V ‘volume’ Halstead

L Halstead's ‘program length’

D ‘difficulty’ Halstead

I Halstead's ‘intelligence’

E ‘Measurement of effort’ (Halstead)

B Halstead's ‘effort estimation’

t ‘Time estimator’

lOCode ‘Line count’

lOComment number of comments lines Halstead

lOBlank number of blank lines

lOCodeAndComment number of comments and line of code

uniq_Op quantity of one kind of operators

uniq_Opnd quantity of one kind of operands

total_Op quantity of operators

total_Opnd quantity of operands

branchCount quantity of the stream graph
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TABLE 4 Categorizing software engineering metrics for NASA datasets

Metrics Datasets

Category Name JM1 KC1 KC2 PC3

Halstead attributes Halstead_content * — — *

Halstead_difficulty * * * *

Halstead_effort * * * *

Halstead_error_estimator * — — *

Halstead_length * * * *

Halstead_level * * * *

Halstead_program_time * * * *

Halstead_volume * * * *

Number_of_perands * * * *

Number_of_operators * * * *

Number_of_unique operands * * * *

Number_of_unique operators * * * *

McCabe attributes Essential_complexity * * * *

Cyclomatic_complexity * * * *

Design_complexity * * * *

Cyclomatic_density — — — *

Size attributes Number_of_lines — * * *

LOC_total * * * *

LOC_executable * — — *

LOC_comments * * * *

LOC_code_and_comments * * * *

LOC_blank * * * *

Other attributes Branch_count * * * *

Condition_count — — — *

EDGE_count — — — *

Parameter_count — — — *

Modified_condition_count — — — *

Multiple_condition_count — — — *

Node_count — — — *

Design_density — — — *

Essential_density — — — *

Decision_count — — — *

Decision_density — — — —

Call_pairs — — — *

Maintenance_severity — * * *

Normalized_cyclomatic complexity — — — *

Percent_comments — * * *

Class attribute Defective * * * *

TABLE 5 General model of confusion

Actual

Predicted

Non-defective Defective

Non-defective True negative (TN) False positive(FP)

Defective False negative (FN) True positive (TP)

ELSABAGH ET AL. 11 of 23



During experiments, we are interested in epistemic uncertainty. We need to measure the proposed classifier uncertainty as well as accuracy.

There are three uncertainty quantification models namely Monte Carlo (MC; Kimaev et al., 2020), the Bootstrap model (Lai, 2020) and the

GMM (Shafiullah et al., 2020).

Srivastav et al. (2013) used the GMM approach that fathoms the issue of assessing the joint probability density of the data under

consideration in the maximum-likelihood. They integrated the uncertainty estimation task and prediction model as one modelling task.

Inspiring by the same mechanism, we will take the output file predicted by the proposed SHO and fed it as input to the GMM

workspace. During the experiment, the OriginPro (Seifert, 2014) is used to plot the GMM by maximum-likelihood 0.001 and maximum

iteration 1000. The output file contains the values of software metrics used in prediction and the actual predicted class (defective

and non-defective). Origin plots the GMM contours of the model output and the scatter plot of the data. If the scatter plot is well

captured by the GMM contours, this will give an evidence of the proposed SHO classifier feasible performance in uncertainty

quantification.

5.2 | Experimental results

During experiments, we implemented the SHO algorithm on random individuals of rules to select the optimal set. Each rule will contain condi-

tional metrics and the class attribute. The MOF (explained in Section 4.1 Equation 13) will judge the optimal rules from the completely random

population during the training. At the end of the training process, these individuals will represent the rule set forming the classification if-then

rules.

To complete the performance measuring process, we used new test instances with unknown class labels (in other words only conditional met-

rics are input to the test process). The classification model (if-then classification rules or optimal rule set obtained from the training process)

matches the conditional metrics of new instances with the rules. When the classification model finds the matching rule, it compares the actual

class label of the rule with the target one. The numbers of true positives, true negatives, false positives, and false negatives for each dataset calcu-

late the performance measures (accuracy, weighted average of precision, recall, specificity, and F-score) listed in Section 5.1 Equations 14–19.

This section discusses the classification performance of the SHO is on NASA datasets, KC1, KC2, JM1, and PC3.

5.2.1 | Predict case 1: Dataset KC1

KC1 contains 22 attributes, 2109 instances, and 326 defects. Here, the proposed classifier is used for predicting software defects using the MOF.

Most importantly, the confusion matrix describing the performance of the classifier on a random set of test data is calculated, as shown in

Table 6. Then, a statistical analysis of performance, such as a weighted average of accuracy, recall, precision, sensitivity, specificity, and F-measure

of the proposed algorithm, is conducted. Table 7 shows comparisons of the proposed classifier with other popular techniques, including ANNs,

NB, SVMs, bagging, K-NN, random forest, PCA for reduction followed by ANN, and C4.5 using WEKA 3.6.

In Table 7, the values of the proposed classifier (SHO), such as the accuracy, weighted average of precision, recall, specificity, and F-score, are

extracted from Table 6 using Equations (14–19). Accuracy measures the percentage of correctly classified test instances, while the weighted aver-

age of precision is estimated as the positive prediction overall testing instances. The recall is the proportion between true positive predictions to

the total ones with regarding each real class separately. Specificity measures the extent of negatives that are accurately recognized. F-score

depends on precision and recall measurement, and it considers the weighted average of them. F-score is valuable more than accuracy rate in a

state of dissimilar dispersion of classification. Figures 3 and 4 show the results of the comparison for accuracy and precision. The comparisons

indicate that the proposed classifier using SHO is the best in terms of accuracy and precision (85.2 and 85.3, respectively) for the KC1 dataset.

The convergence of the proposed classifier using SHO determines the relationship between the number of iterations and the best scores

(MOF values) of the KC1 dataset. As noted, the classifier converges after about 30% of the total number of iterations.

Figure 5 represents the confidence regions of the GMM contours and the scatter plot of the instances in the output KC1 test file from the pro-

posed SHO. The output file contains the selected metrics by the model namely LOC, v(g), ev(g), and iv(g) along with the predicted class (defective or

TABLE 6 Confusion matrix using the proposed classifier

Actual

Predicted

Non-defective Defective

Non-defective 706 2

Defective 123 12
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non-defective). There are 3D contour plots for 4-unique triples of the selected metrics in the KC2 data. The scatter plot of the KC2 test data is feasibly

captured by the GMM contours except for few points. This is evidence for the adequate uncertainty performance of the proposed SHO.

5.2.2 | Predict case 2: Dataset JM1

JM1 contains 22 attributes, 10,885 instances, and 2106 defects. Table 8 shows the confusion matrix resulting from the testing of the proposed classifier.

Similarly, the confusion matrix for the JM1 dataset is shown in Table 8, which leads to Table 9. Figures 6 and 7 and Table 9 show the results

of the statistical analysis described above in the subsection on the experimental setup. These results show that the proposed classifier using the

TABLE 7 Comparative investigation of the proposed classifier with algorithms for KC1

Algorithm/weighted average P (%) SP (%) FPR (%) S (%) F_M (%) ACC (%)

ANN 81.5 43.7 56.3 83.1 82.1 83.1

ANN + PCA 80.8 36.4 63.6 83.6 81.6 83.6

NB 80.4 35.1 57.2 81.5 80.9 81.5

Bagging 81.5 32.4 67.6 84.7 81.7 84.7

K-NN 82.0 42.6 57.4 84.0 82.7 84.0

C4.5 81.3 32.3 67.7 84.6 81.6 84.6

Random forest 80.8 31.1 68.9 84.4 81.2 84.4

SVM 81.9 19.5 80.5 84.6 78.5 84.6

Proposed classifier 85.3 23.4 76.6 85.2 79.7 85.2

Abbreviation: SVM, support vector machine.

F IGURE 3 Comparative analysis in terms of accuracy for KC1

F IGURE 4 Comparative analysis in terms of weighted average precision for KC1
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F IGURE 5 Contours of marginal distributions of spotted hyena optimizer metrics taken three at a time and scatter plots of KC1 data

TABLE 8 JM1 confusion matrix using the proposed classifier

Actual

Predicted

Non-defective Defective

Non-defective 3554 0

Defective 793 8

TABLE 9 Comparative investigation of the proposed classifier with algorithms for JM1

Algorithm/weighted average P (%) SP (%) FPR (%) S (%) F_M (%) ACC (%)

ANN 76.1 23.0 77.0 81.2 74.4 81.2

ANN + PCA 77.3 31.1 68.9 81.3 77.1 81.3

NB 76.4 32.8 67.2 80.6 76.8 80.6

Bagging 77.6 32.5 67.5 81.3 77.2 81.3

K-NN 75.6 44.3 55.7 76.4 76.0 76.4

C4.5 75.5 36.3 63.7 79.2 76.6 79.2

Random forest 76.6 34.8 65.2 80.5 77.2 80.5

SVM 84.5 19.5 80.5 80.8 72.4 80.8

Proposed classifier 85.1 19.2 80.8 81.8 73.8 81.8

Abbreviation: SVM, support vector machine.
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SHO algorithm performs the best in terms of accuracy for the JM1 dataset with scores of 81.8 and 85.1 for precision. The algorithms converge

after approximately 4% of the total number of iterations and especially high rate.

Figure 8 represents the confidence regions of the GMM contours and the scatter plot of the instances in the output JM1 test file from the

proposed SHO. The output file contains the selected metrics by the model namely LOC, v(g), ev(g), and iv(g) along with the predicted class (defec-

tive or non-defective). There are 3D contour plots for 4-unique triples of the selected metrics in the JM1 data. The scatter plot of the KC2 test

data is estimated by the GMM contours except for few points. This shows that the output class predicted by the proposed model fits the PDF of

the GMM model and is considered as a superior performance in uncertainty quantification.

5.2.3 | Predict case 3: Dataset PC3

PC3 contains 38 attributes, 1563 instances, and 160 defects, with 10.23% defective. The confusion matrix for this PC3 is shown in Table 10.

The results in Table 11, Figures 9 and 10 shows that the SVM algorithm yields scores of 88.5 and 78.3 for accuracy and precision, respec-

tively, better than those for other techniques, but the proposed classifier using the SHO algorithm performs best in terms of accuracy and

precision for the PC3 dataset with scores of 89.6 and 94.8, respectively. Again, the algorithm converges after approximately 4% of the total

number of iterations.

Figure 11 represents the confidence regions of the GMM contours and the scatter plot of the instances in the output PC3 test file from

the proposed SHO. The output file contains the selected metrics by the model namely loc_comments, halstead_effort, halstead_prog_time,

F IGURE 6 Comparative analysis in terms of accuracy for JM1

F IGURE 7 Comparative analysis in terms of weighted average precision for JM1
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and num_operators along with the predicted class (defective or non-defective). There are 3D contour plots for 4-unique triples of the selected

metrics in the PC3 data. The scatter plot of the PC3 test data is fitted well to the GMM contours except for few points. This shows that the

output class predicted by the proposed model fit the PDF of the GMM model and is considered as a reliable performance in uncertainty

quantification.

TABLE 10 PC3 confusion matrix using the proposed classifier

Actual

Predicted

Non-defective Defective

Non-defective 508 45

Defective 14 1

F IGURE 8 Contours of marginal distributions of spotted hyena optimizer metrics taken three at a time and scatter plots of JM1 data

TABLE 11 Comparative investigation of the proposed classifier with algorithms for PC3

Algorithm/weighted average P (%) SP (%) FPR (%) S (%) F_M (%) ACC (%)

ANN 84.4 31.8 68.2 86.7 85.3 86.7

ANN + PCA 84.6 24.8 75.3 88.0 85.3 88.0

NB 87.3 84.1 15.9 42.6 49.8 42.6

Bagging 84.6 23.6 76.4 88.2 85.3 88.2

K-NN 84.7 36.6 63.4 85.9 85.2 85.9

C4.5 84.1 27.1 72.9 87.2 85.1 87.2

Random forest 82.5 18.6 81.4 87.4 84.0 87.4

SVM 78.3 11.5 88.5 88.5 83.1 88.5

Proposed classifier 94.8 8.9 91.1 89.6 92.1 89.6

Abbreviation: SVM, support vector machine.
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5.2.4 | Predict case 4: KC2 Dataset

KC2 contains 22 attributes, 522 instances, and 107 defects with 20.5% defective. The confusion matrix for KC2 is shown in Table 12.

Table 13, Figures 12 and 13 show the statistical analysis and results with the proposed algorithm yielding accuracy and precision scores of

84.0 and 84.5, respectively, better than those of ANN, which scores 83.6 and 82.1, respectively. The convergence of SHO resulting from Case

4 for the KC2 dataset occurs after approximately 4% of the total number of iterations.

Figure 14 represents the confidence regions of the GMM contours and the scatter plot of the instances in the output KC2 test file from the

proposed SHO. The output file contains the selected metrics by the model namely LOC, v(g), ev(g), and iv(g) along with the predicted class (defec-

tive or non-defective). There are 3D contour plots for 4-unique triples of the selected metrics in the KC2 data. The scatter plot of the KC2 test

data is fitted well to the GMM contours except for few points. This shows that the output class predicted by the proposed model fits the PDF of

the GMM model and is considered as a good performance in uncertainty quantification.

The standard deviation is a good measure for algorithm stability. The low standard deviation shows that the values tend to be near the aver-

age, whereas the high standard deviation shows that the values spread with different values. Therefore, the low standard deviation of the accu-

racy scores proves that algorithms reach approximately the same accuracy in every run during the experiments. In evaluating the algorithms, if

there is an equality of accuracy values, the standard deviation can assist in breaking the equality. A lower standard deviation indicates a more sta-

ble classifier. Table 14 presents the standard deviation of accuracy scores for each algorithm on 15 runs. As the SHO classifier shows the lowest

deviation in accuracy score, we can say it is a feasible solution for the SDP problem.

F IGURE 9 Comparative analysis in terms of accuracy for PC3

F IGURE 10 Comparative analysis in terms of weighted average precision for PC3
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5.3 | Experimental discussion

As per the experimental results, the meta-heuristic SHO algorithm is applied to four different datasets, KC1, KC2, JM1, and PC3 to find the fittest

classification model (standard rules) among individuals. This experiment used the SHO as a classifier to improve SDP for with-in projects. The pro-

posed system begins the search process with a population of random if-then rules. Everyone is composed of conditional and decision parts. The

conditional part (antecedent) is the software metrics explained in Section 5.1. The decision is whether the rule label defective or non-defective.

The random sets of rules are organized afterward by the fitness function, which keeps only the good individuals. Then, the SHO algorithm makes

others follow the best ones by exploration and exploitation processes. Support and confidence were used as the MOF during the experiments to

locate the fittest rules. The support equation finds the rules, which cover the largest number of instances where the confidence measures the

ratio between the instances that satisfy the whole rule to those which satisfy the antecedent or conditional part of the rule. The MOF finds the

optimal rules, which match the largest number of dataset instances.

F IGURE 11 Contours of marginal distributions of spotted hyena optimizer metrics taken three at a time and scatter plots of PC3 data

TABLE 12 KC2 confusion matrix using the proposed classifier

Actual

Predicted

Non-defective Defective

Non-defective 119 1

Defective 23 7
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The experimental study showed that the proposed algorithm performs better than popular techniques of data mining in terms of accuracy

score 85.2, 81.8, 89.6, and 84.0 and precision score 85.3, 85.1, 94.8, and 84.5 for KC1, JM1, PC3, and KC2, respectively. Moreover, the standard

deviation is computed for the SHO algorithm and compared with the popular data mining techniques mentioned in the literature. The experiment

TABLE 13 Comparative investigation of the proposed classifier with algorithms for KC2

Algorithm/weighted average P (%) SP (%) FPR (%) S (%) F_M (%) ACC (%)

ANN 82.0 42.1 57.9 83.6 80.7 83.6

ANN + PCA 78.2 37.3 62.7 81.4 78.0 81.4

NB 81.1 66.3 33.7 76.5 78.1 76.5

Bagging 65.6 19.0 81.0 81.0 72.5 81.0

K-NN 76.4 38.8 61.2 79.5 77.4 79.5

C4.5 65.6 19.0 81.0 81.0 72.5 81.0

Random forest 65.6 19.0 81.0 81.0 72.5 81.0

SVM 76.5 36.9 63.1 80.0 77.4 80.0

Proposed classifier 84.5 38.5 61.5 84.0 80.0 84.0

Abbreviation: SVM, support vector machine.

F IGURE 12 Comparative analysis in terms of accuracy for KC2

F IGURE 13 Comparative analysis in terms of weighted average precision for KC2
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shows that the SHO is the highest in accuracy and precision and the lowest in standard deviation. Therefore, the SHO meta-heuristic algorithm

proved its ability as a feasible and stable classifier.

Through experiments, the proposed classifier reaches its optimum solution through the first set of iterations and keeps steady on the opti-

mum solution during the remainder of the iterations. For example, for JM1, PC3, and KC2, the algorithm reaches its optimum solution after at

F IGURE 14 Contours of marginal distributions of spotted hyena optimizer metrics taken three at a time and scatter plots of KC2 data

TABLE 14 Standard deviation according to the accuracy

Algorithms

Datasets

KC1 JM1 KC2

JM1 KC2 KC1 KC2 KC1 JM1

ANN 0.056 0.079 0.071 0.089 0.073 0.040

ANN + PCA 0.054 0.079 0.072 0.088 0.078 0.041

NB 0.064 0.082 0.082 0.088 0.084 0.043

Bagging 0.063 0.080 0.071 0.084 0.080 0.035

K-NN 0.075 0.083 0.091 0.091 0.092 0.053

C4.5 0.073 0.081 0.084 0.081 0.084 0.037

Random forest 0.058 0.080 0.073 0.082 0.083 0.052

SVM 0.061 0.078 0.071 0.079 0.061 0.041

Proposed classifier 0.041 0.080 0.071 0.081 0.051 0.032

Abbreviation: SVM, support vector machine.
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most 4% of the total number iterations, while for KC1 the proposed algorithm converges after 17 iterations (approximately 30%). This is a rela-

tively fast rate of convergence.

In the uncertainty quantification study of the SHO, the GMM approach is used to estimate the joint probability density of data distribution in

the output test file. The contours drew by the GMM adequately captured the scatter plot of the test file containing the selected most important

metrics and the predicted class. This is evidence of a feasible uncertainty performance of the SHO classifier.

According to our experiments, the SHO proved its ability to find optimal classification rules in a relatively fast convergence time and better

than the mentioned literature studies. Nevertheless, we think the accuracy rate and precision should be increased by enhancing the quality of the

datasets used for the study. Moreover, the testing process is a very overly problem and up till now the prediction model could guide the test team

to find the defects, but we need a complete automated defect prediction process.

6 | CONCLUSIONS AND FUTURE WORK

Various techniques were proposed here for improving SDP. The challenge of classification accuracy arises in connection with predicting many

datasets. This study used the SHO algorithm to improve SDP. This new meta-heuristic algorithm was used as a classifier for defect prediction

within projects. Support and confidence were used as the MOF during the experiments to locate the fittest rules. An experimental study showed

that the proposed algorithm performs better than popular techniques of data mining in terms of accuracy and precision with a mean of 85.2 and

87.4, respectively. In addition, other measurements were determined for the proposed classifier and contrasted with those of several other algo-

rithms. These comparisons demonstrated that the proposed classifier can be used to predict software defects efficiently.

The proposed system gives a binary decision, either defective or non-defective, but it is known that there is an area of ambiguity between

the two decisions. This is because the software metrics can have unstable or conflicting values. The system should absorb these light changes in

values and work accordingly. Hence, this calls for attention to uncertainty in software defection decisions. Future work should include an

upgrading of the SDP systems to cover uncertainty fields like fuzzy (Zadeh & Aliev, 2018) and rough (Riaz et al., 2019) theories. These fields give

more space for metrics values by degrees of membership, lower and upper approximations. Moreover, the SDP can include exploring the applica-

tion of a feature reduction methodology before training the classifier to ensure that only the key features are concentrated on. Testing this classi-

fier for its ability to determine defect types would also be of interest.
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