

Practical Pharmaceutical Analytical Chemistry - II

Second Level First Semester 2018-2019

Section 3

Oxidation - Reduction Titration (Redox Titration)

Redox Indicators

- ✓ They are <u>highly colored organic compounds</u> that change their color when being oxidized or reduced.
- ✓ The color change depends on the change in <u>the redox</u> <u>potential (E)</u> of the system during titration.
- ✓ The half-reaction responsible for the color change of the indicator can be written as follows:

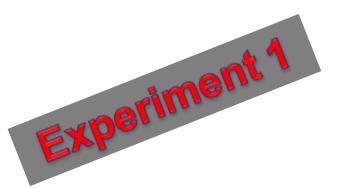
$$\begin{array}{cccc} \ln_{Ox} & + & ne^{-} \rightleftharpoons \ln_{Red} \\ \hline & & & \\ \text{Oxidized form} & & & \\ \end{array} \end{array}$$

Requirements (specifications) of general redox indicators:

1. Has a standard redox potential <u>intermediate</u> between that of the sample and that of the titrant.

 E^{o} sample < E^{o} indicator < E^{o} titrant OR E^{o} sample > E^{o} indicator > E^{o} titrant

- So that the titrant reacts first with the sample and then with the indicator at the end point.
- 2. Exhibits a sharp, readily detectable color change.
- 3. The <u>transition potential</u> of the indicator (i.e. the potential range at which the indicator changes its color) should be <u>close to</u> the potential at the equivalence point.

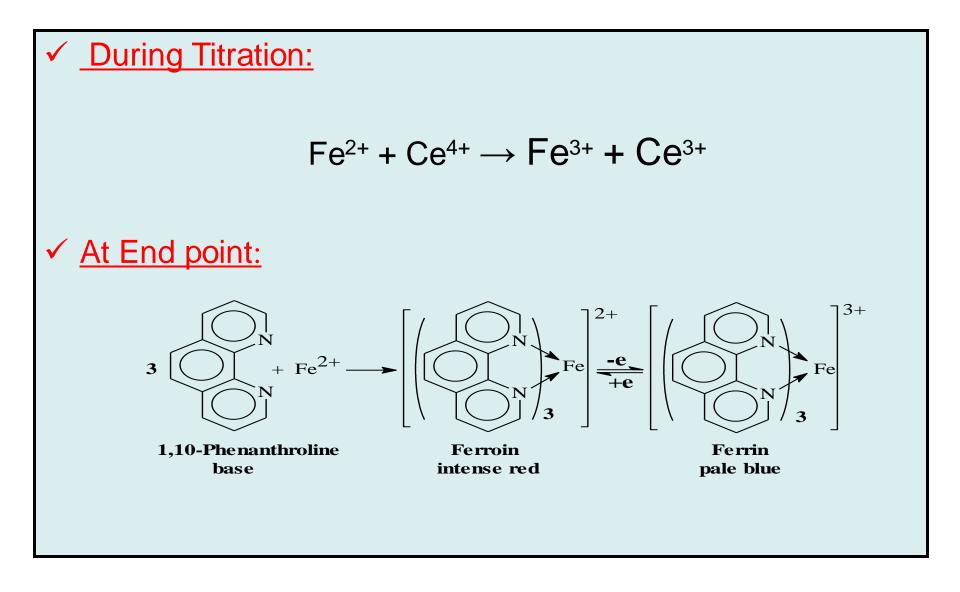

<u>1,10-Phenanthroline indicator:</u> { USP }

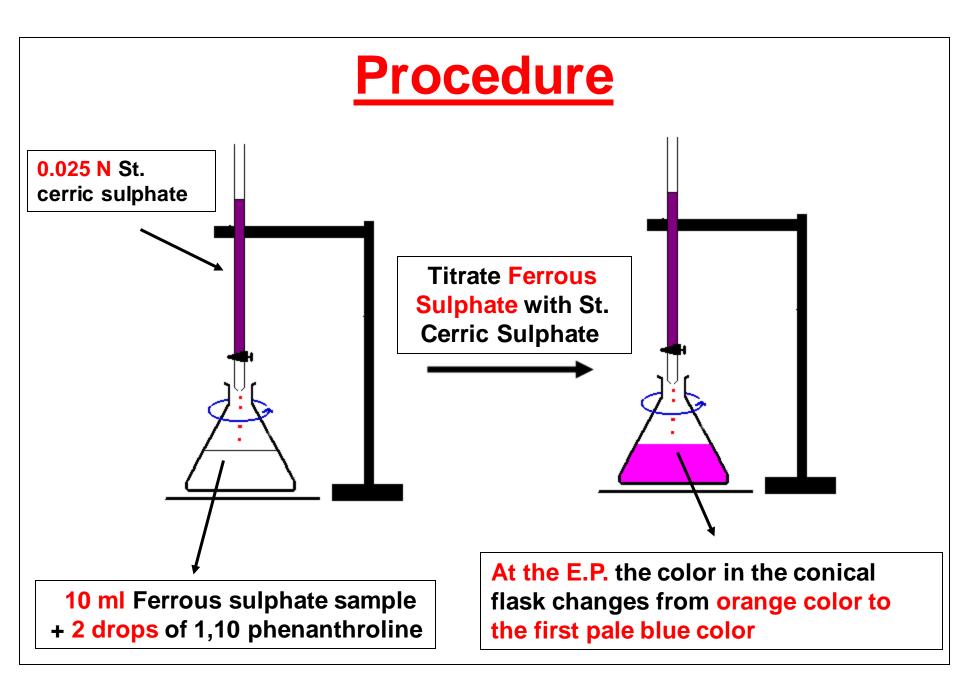
Used for the titration of ferrous $\{Fe^{2+}\}$ # cerric sulfate <u>titrant</u> $\{Ce(SO_4)_2\}$.

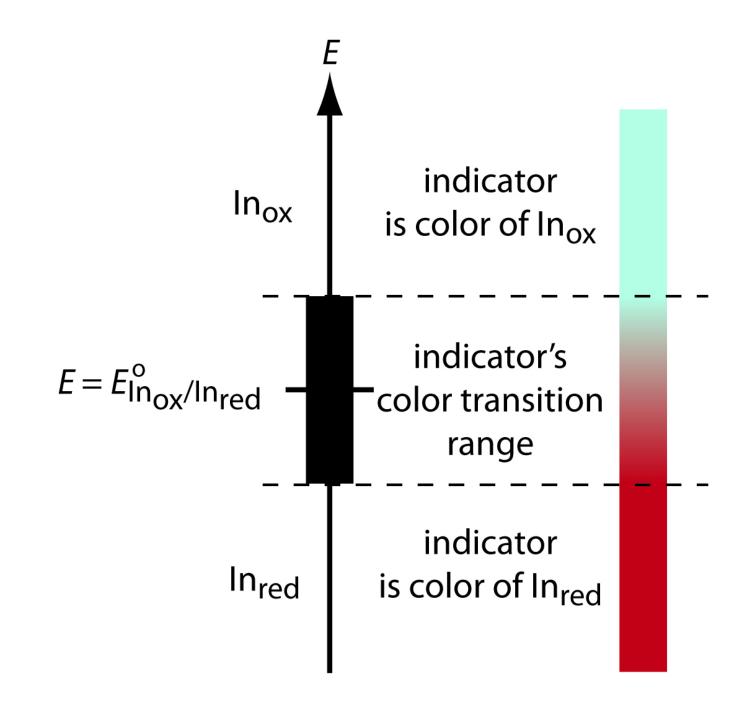
Diphenylamine indicator:

Used for the titration of ferrous $\{Fe^{2+}\} \# pot.$ dichromate titrant $\{K_2Cr_2O_7\}$.

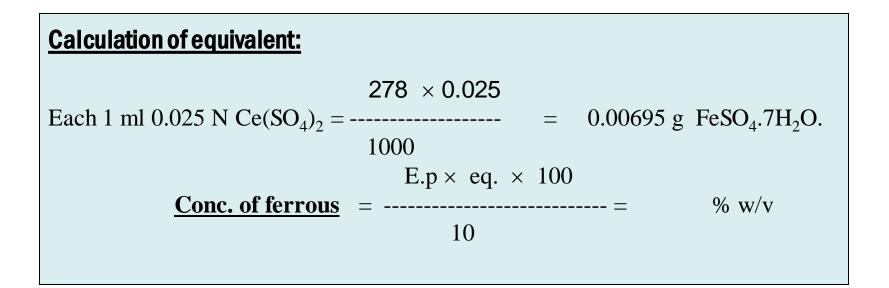
Determination of Ferrous Salts (FeSO₄.7H₂O)




Determination of Ferrous with 0.1 N Ceric Sulphate using 1,10-Phenanthroline Indicator


Principle

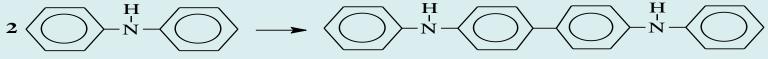
✓ Ferrous salts can be determined by titration with 0.1 N Ceric
Sulphate using 1,10-Phenanthroline as a redox indicator.


 <u>1,10-Phenanthroline-ferrous complex (ferroin)</u> is an intense red colored complex, which is reversibly oxidized (with strong oxidizing agents) to <u>phenanthroline-ferric complex ion (ferrin)</u>, which has <u>a pale blue</u> color. The complex is used as an indicator in the titration of ferrous by ceric sulphate.

Calculations

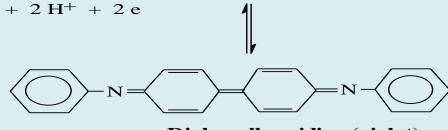
Determination of Ferrous with 0.1 N Potassium Dichromate using Diphenylamine Indicator

Principle


 Ferrous salts can be determined by titration with 0.1 N Potassium Dichromate using Diphenylamine as a redox indicator.

✓ During Titration:

$$Cr_2O_7^{2-}$$
 + 6 Fe²⁺ + 14H⁺ \rightarrow 2Cr³⁺ + 6 Fe³⁺ + 7H₂O

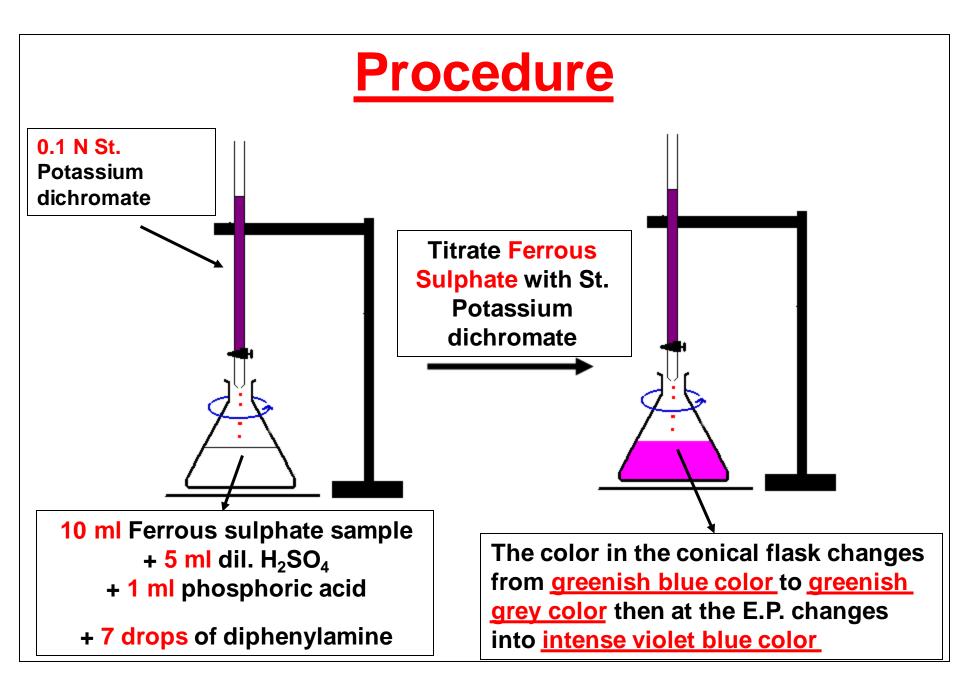

✓ <u>At End point:</u>

The diphenylamine (I) undergoes oxidation first into <u>a colourless diphenylbenzidine (II)</u> which is the real indicator and is reversibly further oxidized to <u>diphenylbenzidine violet (III)</u>.

Diphenylamine

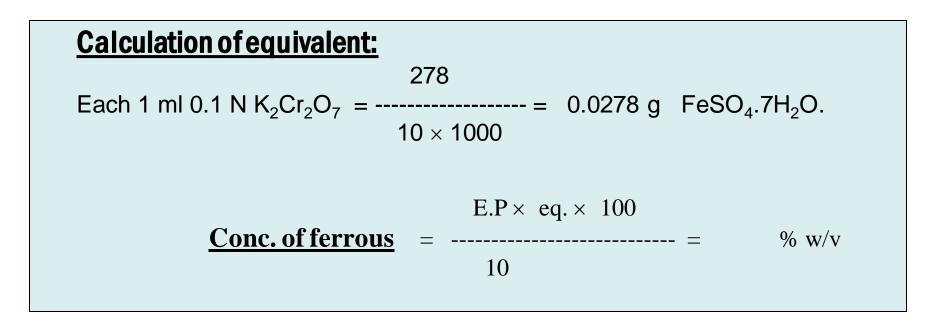
Diphenylbenzidine (colourless)

Diphenylbenzidine (violet)


 $+ 2 H^{+} + 2 e$

- The oxidation potential of the system diphenylamine/diphenylbenzidine (colourless)/diphenylbenzidine (violet) = <u>0.76 volt</u>
- ✓ The oxidation potential of $Fe^{3+}/Fe^{2+} = 0.77$ volt
- ✓ The oxidation potential of $Cr_2O_7^{2-}/2Cr^{3+} = 1.36$ volt
- > It is obvious that there is an <u>overlapping</u> between Eind & E_{Fe}^{3+}/Fe^{2+}
- For this, diphenylamine is only able to function as indicator in this reaction when <u>phosphoric acid</u> is present in the solution.
- What is the role of Phosphoric acid?
- □ **Formation of a colorless complex with the produced ferric ions** leading to:
- Decreasing the molar concentration of Ferric and hence reduces the actual potential of (Fe³⁺/Fe²⁺) system so that Fe²⁺ ion will be <u>oxidized before</u> the indicator.
- 2. Removing the dark yellow color of Fe^{3+} ion giving a more clear color change.

Electrochemical series (E^o values at 25°C)


TABLE 17.1	Standard Reduction Potentials at 25 °C			
Stronger oxidizing agent	Reduction Half-Reaction		E ° (V)	
	$F_2(g) + 2e^-$	$\rightarrow 2 F^{-}(aq)$	2.87	Weaker
	H2O2(aq) + 2H*(aq) + 2e-		1.78	reducin
	MnO ₄ -(aq) + 8 H*(aq) + 5 e-		1.51	agent
	$CI_2(g) + 2e^-$	$\longrightarrow 2 Cl^{-}(aq)$	1.36	
	Cr2072(aq) + 14H+(aq) + 6e	\rightarrow 2 Cr ³⁺ (aq) + 7 H ₂ O(1)	1.33	
	$O_2(g) + 4H^+(aq) + 4e^-$	\rightarrow 2 H ₂ O(<i>I</i>)	1.23	
	Br ₂ (aq) + 2 e ⁻	$\longrightarrow 2 Br^{-}(aq)$	1.09	
	Ag ⁺ (<i>aq</i>) + e [−]	$\longrightarrow Ag(s)$	0.80	
	$Fe^{3+}(aq) + e^{-}$	\longrightarrow Fe ²⁺ (aq)	0.77	
	O2(g) + 2H+(aq) + 2e-	\longrightarrow H ₂ O ₂ (aq)	0.70	
	I ₂ (s) + 2 e ⁻	$\longrightarrow 2 l^{-}(aq)$	0.54	
	O2(g) + 2 H2O(I) + 4 e-	> 4 OH [−] (aq)	0.40	
	Cu 2+(aq) + 2 e-	→ Cu(s)	0.34	
	Sn ⁴⁺ (aq) + 2 e ⁻	\longrightarrow Sn ²⁺ (aq)	0.15	
	2 H*(aq) + 2 e-	$\longrightarrow H_2(g)$	0	
	Pb ²⁺ (aq) + 2e ⁻	$\longrightarrow Pb(s)$	- 0.13	
	Ni 2+(aq) + 2 e-	\longrightarrow Ni(s)	- 0.26	
	Cd ²⁺ (aq) + 2 e ⁻	$\longrightarrow Cd(s)$	- 0.40	
	Fe ²⁺ (aq) + 2 e ⁻	> Fe(s)	- 0.45	
	Zn ²⁺ (aq) + 2 e ⁻	\longrightarrow Zn(s)	- 0.76	
	2H ₂ O(1) + 2e ⁻	\longrightarrow H ₂ (g) + 2 OH ⁻ (aq)	- 0.83	
	Al ³⁺ (aq) + 3 e ⁻	$\longrightarrow AI(s)$	- 1.66	
Weaker	Mg ²⁺ (aq) + 2 e ⁻	\longrightarrow Mg(s)	- 2.37	Stronge
oxidizing	Na ⁺ (aq) + e ⁻	→ Na(s)	- 2.71	reducin
agent	Li ⁺ (aq) + e ⁻	\longrightarrow Li(s)	- 3.04	agent

© 2008 Pearson Prentice Hall, Inc.

