

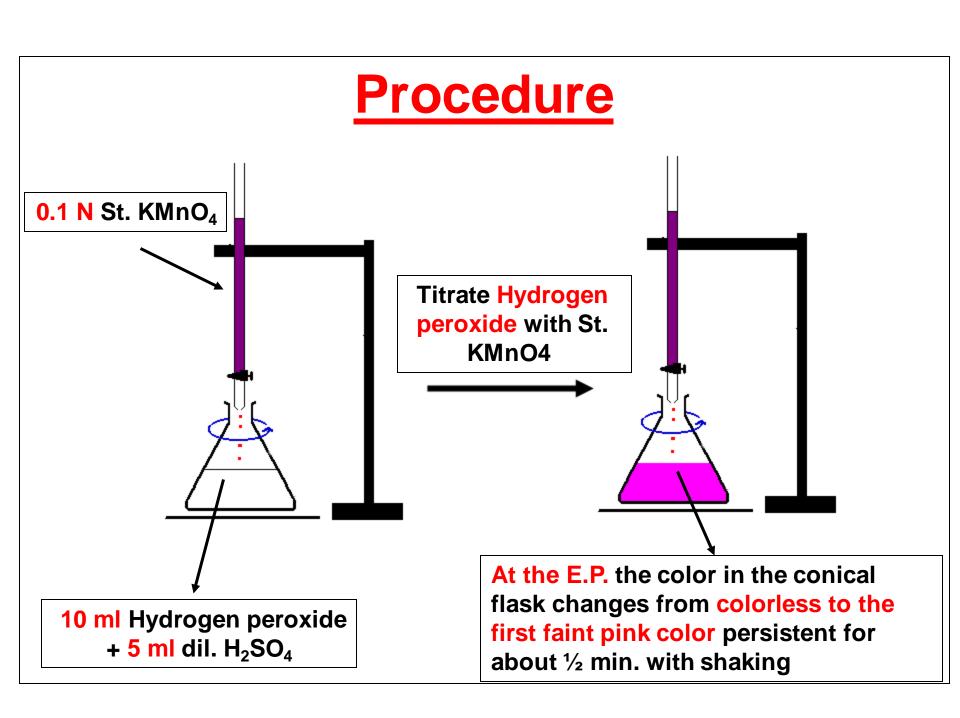
Practical Pharmaceutical Analytical Chemistry - II

Second Level First Semester 2018-2019

Section 2

Oxidation - Reduction Titration (Redox Titration)

Determination of Hydrogen Peroxide (H₂O₂)


(Official in USP and BP)

<u>Principle</u>

✓ By direct titration of the sample against standard KMnO₄
in presence of dil. H₂SO₄.

$$5 \text{ H}_2\text{O}_2 + 2 \text{ MnO}_4^- + 16 \text{ H}^+ \longrightarrow 2 \text{ Mn}^{2+} + 8 \text{ H}_2\text{O} + 5 \text{ O}_2$$

- ✓ When potassium permanganate solution is added to hydrogen peroxide solution acidified with sulphuric acid, the permanganate is readily reduced into manganous salt while peroxide is oxidized into water and molecular oxygen.
- ✓ <u>KMnO4</u> acts as <u>a self-indicator</u> for end point detection.

Calculations

Q. Calculate concentration of H_2O_2 in Normal, Molar and g % or % W / V ?

1. In Normal:

$$N \cdot V (KMnO_4) = N \cdot V \cdot (H_2O_2)$$

$$N = 0.1$$

$$V = E.P$$

$$N' = ??$$

2. In Molar:

$$N = M * n$$

$$M = N / n$$
 Where n is the No. of electron transfer, n for $H_2O_2 = 2$ So, $M = N / 2$

3. In g %:

Conc. in g % = M * M.Wt / 10

Volume strength of H₂O₂

Hydrogen peroxide solution is a widely used antiseptic preparation. It is available in pharmacies in 3 concentrations:

10 Volume – 20 Volume – 30 Volume

$$\equiv$$
 3 g% - 6 g% - 9 g%

Volume strength of H₂O₂

It is the number of mLs of O_2 liberated by complete thermal decomposition of 1 mL of H_2O_2 solution at normal temperature and pressure (N.T.P) i.e: 25°C and 1 atm.

Example:

If concentration of H_2O_2 is 3%, what is its volume strength?

Step 1:

 $3 \text{ g H}_2\text{O}_2$ 100 mL solution of H_2O_2

? g H₂O₂ ______ 1 mL solution of H₂O₂

Answer: 0.03 g H₂O₂ is present in 1 mL of 3% H₂O₂ solution

Step 2:

2 moles II₂O₂

→ 1 mole O₂

$$0.03 \text{ g H}_2\text{O}_2$$
 \longrightarrow X mL O₂

$$X = 10 \text{ mL } O_2$$

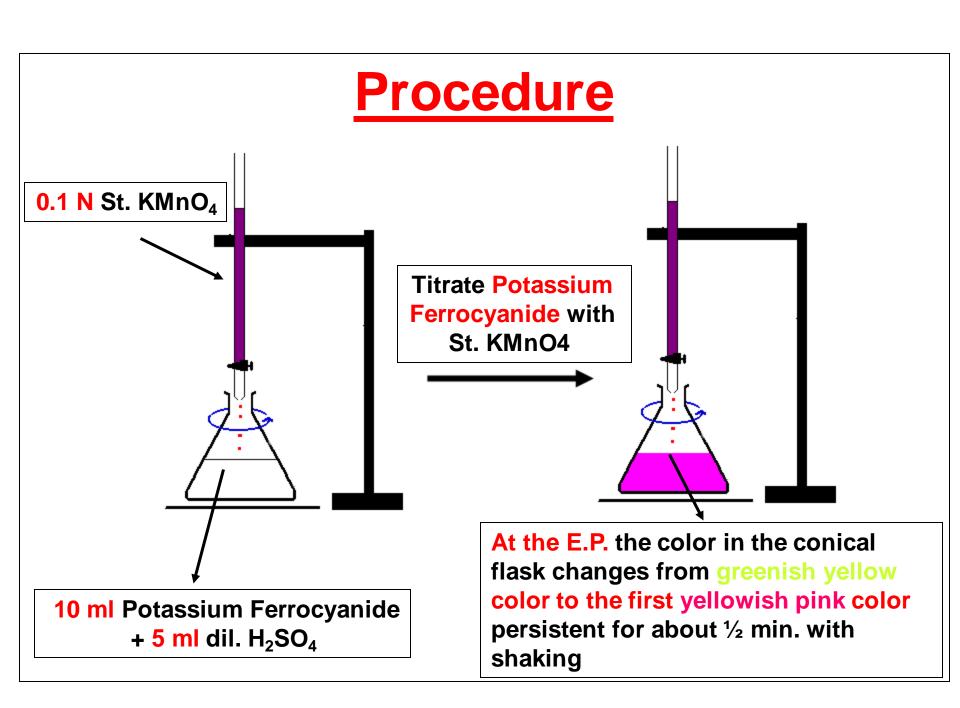
Summary:

1 mL of 3% H_2O_2 solution (0.03 g H_2O_2)

by decomposition

10 mL O₂

3% H_2O_2 solution = 10 volume H_2O_2 solution.


Determination of Ferrocyanide (K₄[Fe(CN)₆].3H₂0)

<u>Principle</u>

✓ By direct titration of the sample against standard KMnO₄
in presence of dil. H₂SO₄.

```
5 [Fe(CN)_6]^{4-} + MnO_4^{-} + 8 H^+ \longrightarrow 5 [Fe(CN)_6]^{3-} + Mn^{2+} + 4 H_2O
```

- ✓ When potassium permanganate solution is added to Potassium Ferrocyanide solution acidified with sulphuric acid, the permanganate is readily reduced into manganous salt while Ferrocyanide is oxidized into Ferricyanide.
- ✓ <u>KMnO</u>₄ acts as <u>a self-indicator</u> for end point detection.

Calculations

 $N \cdot V (KMnO_4) = N \cdot V (Potassium Ferrocyanide)$

N = 0.1

N' = ??

V = E.P

V = 10

