Analytical Chemistry Course For second year pharmacy Students

by:

Dr/Amira Al.Enna

Demonstrator at Pharmaceutical Analytical Chemistry department

Analytical Chemistry

 The branch of chemistry that deals with the <u>separation</u>, <u>identification</u> and <u>determination</u> of components in a sample.

Qualitative

Analysis

Quantitative

Quantitative Analysis

Methods of analysis:-

1-Traditional methods of analysis

- A-titrimetric(volumetric) analysis
- o B- gravimetric analysis
- **2-Instrumental analysis**

Concentration may be

atom	Η	С	0	Na	Cl	S
Atomic weight	1	12	16	23	35.5	32

Molecule	M.W
HCI	36.5
H_2SO_4	98
NaOH	40
Na ₂ CO ₃	106
NaCl	58.5

Mole (gram-molecular weight)

Molecular weight of the substance expressed in grams.

- e.g. 1 mole of NaOH = 40 g
 - 0.5 mole of NaOH = 20 g
 - 2 moles of NaOH = 80 g

Weight of the substance that will be chemically equivalent to one gram-atom of protons.

$36.5 \equiv$ one gram-atom of protons

E.W of HCI = M.W/n = 36.5/1 = 36.5

 $98 \equiv 2$ gram-atom of protons $49 \equiv 1$ gram-atom of protons

E.W of $H_2SO_4 = M.W/n = 98/2 = 49$

$H_2SO_4 + NaOH \longrightarrow NaHSO_4 + H_2O n=1$

E.W = 98/1 = 98

 $H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O n=2$

E.W = 98/2 = 49

Acid	n
HCl	1
H ₂ SO ₄	2
H ₃ PO ₄	3

Alkali	n	Salt	n
NaOH	1	NaCl	1*1
$Ca(OH)_2$	2	MgSO ₄	1*2
Al(OH) ₃	3	$Fe_3(PO_4)_2$	3*2

Solution which contains one gram-molecular weight of the substance in one liter of solution.

Molecule	M.W
HCI	36.5
H_2SO_4	98
NaOH	40
Na ₂ CO ₃	106
NaCl	58.5

Weight "gm" = M * M.W * volume "L"

Normal concentration

Solution which contains one gram-equivalent weight of the substance in one liter of solution.

Molecul e	M.W/EW
HCI	36.5/ 36.5
H_2SO_4	98 / 49
NaOH	40 / 40
Na ₂ CO ₃	106 / 53
NaCl	58.5 / 58.5

No. of gm equivalents

Volume "L"

No. of gm equivalents =

Normal concentration =

Weight "gm"

E.W

$$N = \frac{\text{Weight "gm"}}{\text{E.W * volume "L"}}$$

Weight "gm" = N * E.W * volume "L"

Molarity & Normality

% conc. =
$$\frac{\text{weight (g)}}{\text{Volume (mL)}} \times 100$$
 g % or % W / V

- Volumetric glasswares
- Other glasswares

Volumetric glasswares

- 1-Burette
- 2-Pipette
- 3-Volumetric flask

1-Burette

Figure 19.3 General acid-base titration set-up

How to read burette?

Measuring a Liquid Volume

- When taking measurement readings it is important to:
 - Read the meniscus at eye level. Do not read the meniscus from above or below eye level. Significant measurement errors may occur
 - Read the bottom of a concave meniscus.

Pipette

Volumetric flask

Other glasswares

- Conical Flasks
- Measure (cylinder)
- beaker

Conical flask

measure

beaker

Quantitative Analysis

Volumetric / Titrimetric

Instrumental

Titration

It's the process of bringing a measured volume of standard solution (Titrant) into a quantitative reaction with the substance to be determined (analyte).

Standard Solution

Solution of accurately known concentration.

Types of titration

- 1. Acid-base (neutralization) titration.
- 2. Precipitation titration.
- 3. Complex formation titration.
- 4. Redox titration

At E.P.

no of moles of titrant = no of moles of analyte no of moles of NaOH = no of moles of HCI $M \times V$ (NaOH) = M' $\times V$ ' (HCI)

$$M = \frac{No \text{ of moles}}{V (L)}$$

No. of milliliters of titrant equivalen to 1 gm of the sample

% conc. =
$$\frac{\text{weight (g)}}{\text{Volume (mL)}} \times 100$$

E.P is the volume of titrant equivalent to the sample

How can we recognize that a chemical reaction is completed?

Indicator

Substance (usually a dye) that change its color at the end point

In acid-base titration:

Substance which has two colors: one in acidic medium and other in alkaline medium.

(pH indicator or acid-base indicator)

We continue to add titrant till there is abrupt change in the color of the indicator which means that all of the analyte is consumed by the titrant "End point or Equivalence point : E.P".

$$C * V_{acid} = C' * V'_{base}$$

Standard Solution

Primary

Prepared by <u>direct</u> <u>weighing</u> of known amount of <u>primary</u> <u>standard substance</u> and dissolving in solvent to reach certain volume.

Secondary

Solution of <u>non-</u> <u>primary stanadard</u> substance , can't be prepared by direct weighing, so it needs <u>standardization</u>

Primary Standard Substance

A substance of sufficient purity from which a primary standard solution can be prepared by direct weighing and dissolving in solution

Requirements

Absolute or known purity.

Stable at oven temperature for drying.

Stable when become in contact with air "NaOH

absorbs moisture and produce Na_2CO_3 ".

Undergoes a quantitative reaction.

High equivalent weight to reduce weighing errors.

Available at reasonable cost.

Examples

Acidic Primary St.Substance

CooH CooH CooH Oxalic acid

$$NH_2 - SO_3H$$

Sulfamic acid

Benzoic acid

Potassium hydrogen phthalate

Alkaine Primary St.Substance

KHCO₃

Na₂B₄O₇.₁₀H₂O Borax

COONa COONa Sodium oxalate

Secondary standard solution

- Solution of non-primary standard substance.
- > Can't be prepared by direct weighing.
- > Must be standardized by:
- **1. Titration against primary st. solution.**
- 2. Titration against standardized secondary st. solution.
- 3. Gravimetric analysis.

1N SOD. HYDROXIDE

1N SOD. HYDROXIDE

Standardization

Oxalic acid Primary standard solution

HCl solution Standardized by Na₂CO3 solution

Exact Normality

Determination of EXACT normality:

Calculation of Correction Factor:

F = Determined Normality / Desired

Normality

