Analytical Chemistry Course For

second year pharmacy Students

$$
\stackrel{\text { by: }}{\text { Dr/Amira Al.Enna }}
$$

Demonstrator at Pharmaceutical Analytical
Chemistry department

Analytical Chemistry

- The branch of chemistry that deals with the separation, identification and determination of components in a sample.

Analysis

Qualitative

Quantitative

Quantitative Analysis

*Methods of analysis:-
1-Traditional methods of analysis

- A- titrimetric(volumetric) analysis
- B- gravimetric analysis

2-Instrumental analysis

Concentration may be

Molar

Normal

Molal
Formal

atom	H	C	0	Na	Cl	S
Atomic weight	1	12	16	23	35.5	32
	Molecule			M.W		
	HCl			36.5		
	$\mathrm{H}_{2} \mathrm{SO}_{4}$			98		
	NaOH			40		
	$\mathrm{Na}_{2} \mathrm{CO}_{3}$			106		
	NaCl			58.5		October 21,2018

Mole (gram-molecular weight)

*Molecular weight of the substance expressed in grams.
e.g. 1 mole of $\mathrm{NaOH}=40 \mathrm{~g}$
0.5 mole of $\mathrm{NaOH}=20 \mathrm{~g}$

2 moles of $\mathrm{NaOH}=80 \mathrm{~g}$

Weight "gm"
No. of moles =
M.W

Equivalent Weight

Weight of the substance that will be chemically equivalent to one gram-atom of protons.
E.W = M.W / n

Alkali

No. of
replaceable

No. of OH groups

$36.5 \equiv$ one gram-atom of protons
E.W of $\mathrm{HCl}=\mathrm{M} . \mathrm{W} / \mathrm{n}=36.5 / 1=36.5$

mole of $\mathrm{H}_{2} \mathrm{SO}_{4}=98 \mathrm{~g} \underbrace{96 \mathrm{~g} \mathrm{SO}}_{2 \mathrm{gH}}$

$98 \equiv 2$ gram-atom of protons
$49 \equiv 1$ gram-atom of protons
E.W of $\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{M} . \mathrm{W} / \mathrm{n}=98 / 2=49$

$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaOH} \longrightarrow \mathrm{NaHSO}_{4}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{n}=1$

$$
\text { E.W = } 98 / 1=98
$$

$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \mathrm{n}=2$

$$
\text { E.W = } 98 / 2=49
$$

Acid	n
$\mathbf{H C l}$	1
$\mathbf{H}_{2} \mathbf{S O}_{4}$	2
$\mathbf{H}_{3} \mathbf{P O}_{4}$	3

Salt	n
$\mathbf{N a C l}$	$1 * 1$
$\mathbf{M g S O}_{4}$	$\mathbf{1 * 2}$
$\mathrm{Fe}_{\mathbf{3}}\left(\mathbf{P O}_{4}\right)_{2}$	$3 * 2$

October21,2018

Concentration may be

Molar

Normal

Molar conccurailon

Solution which contains one gram-molecular weight of the substance in one liter of solution.

No. of moles
Molar concentration $=\quad$ Volume " L "

$$
\text { No. of moles }=\frac{\text { Weight "gm" }}{\text { M.W }}
$$

$$
\mathbf{M}=\frac{\text { Weight "gm" }}{\text { M.W * volume "L" }}
$$

Weight "gm" = M * M. W * volume "L"

Solution which contains one gram-equivalent weight of the substance in one liter of solution.

No. of gm equivalents
 Normal concentration $=\frac{\text { Volume " } \mathrm{L} \text { " }}{\text { V }}$

No. of gm equivalents = Weight "gm"
E.W

$$
N=\frac{\text { Weight "gm" }}{E . W * \text { volume "L" }}
$$

Molarity \& Normality

Normal concentration $=$
No. of gm equivalents Volume "L"
Weight "gm"
$N=$ E.W * volume "L"

$$
\mathbf{N}=\frac{\text { Weight "gm"* } \mathrm{n}}{\mathrm{MW}{ }^{*} \text { volume"L" }}
$$

Percentage \%

\% concentration

GLasswares

* Glasswares

- Volumetric glasswares
- Other glasswares

Volumetric glasswares

- 1-Burette
- 2-Pipette
- 3-Volumetric flask

1-Burette

Figure 19.3 General acid-base titration set-up

How to read burette?

Measuring a Liquid Volume ${ }^{\times}$

- When taking measurement readings it is important to:
- Read the meniscus at eye level. Do not read the meniscus from above or below eye level. Significant measurement errors
 may occur
- Read the bottom of a concave meniscus.

Buret

(The unit of measurement is milliliter)

Pipette

October21,2018

Volumetric flask

Other glasswares

- Conical Flasks
- Measure (cylinder)
- beaker

Conical flask

measure

beaker

Quantitative Analysis

Volumetric / Titrimetric

Instrumental

Titration

It's the process of bringing a measured volume of standard solution (Titrant) into a quantitative reaction with the substance to be determined (analyte).

Standard Solution

Solution of accurately known concentration.

Types of titration

1. Acid-base (neutralization) titration.
2. Precipitation titration.
3. Complex formation titration.
4. Redox titration

$\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

At E.P.

no of moles of titrant = no of moles of analyte no of moles of $\mathrm{NaOH}=$ no of moles of HCl
$\mathrm{M} \times \mathrm{V}(\mathrm{NaOH})=\mathrm{M}^{\prime} \times \mathrm{V}^{\prime}(\mathrm{HCl})$

$$
M=\frac{\text { No of moles }}{V(L)}
$$

$$
\mathrm{N} . \mathrm{V}=\mathrm{N}^{\prime} . \mathrm{V}^{\prime}
$$

Titre"Equivalence"

No. of milliliters of titrant equivalen to 1 gm of the sample

Titre $=$ E.W(sample) $\times \mathrm{N}$. (titrant)
 1000

$\%$ conc. $=\frac{\text { weight }(\mathrm{g})}{\text { Volume }(\mathrm{mL})} \times 100$

E.P is the volume of titrant equivalent to the sample

How can we recognize that a chemical reaction is completed?

Indicator

Substance (usually a dye) that change its color at the end point

In acid-base titration:
Substance which has two colors: one in acidic medium and other in alkaline medium.
(pH indicator or acid-base indicator)

Examples

Alkaline medium

Phenol phthalein

Methyl orange

Yellow

We continue to add titrant till there is abrupt change in the color of the indicator which means that all of the analyte is consumed by the titrant "End point or Equivalence point : E.P".

$$
\mathbf{C} * \mathbf{V}_{\text {acid }}=C^{\prime *} \mathbf{V}^{\prime}{ }_{\text {base }}
$$

Standard Solution

Primary

Prepared by direct weighing of known amount of primary standard substance and dissolving in solvent to reach certain volume.

Secondary

Solution of non-
primary stanadard substance, can't be prepared by direct weighing, so it needs standardization

Primary Standard Substance

Definition

A substance of sufficient purity from which a primary standard solution can be prepared by direct weighing and dissolving in solution

Primary Standard Substance

Requirements

*Absolute or known purity.
*Stable at oven temperature for drying.
*Stable when become in contact with air " NaOH absorbs moisture and produce $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ".
*Undergoes a quantitative reaction.
*High equivalent weight to reduce weighing errors.

* Available at reasonable cost.

Examples

Aciodic Primnary stsSubstance

$\mathrm{CoOH} \quad{ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$
CooH
Oxalic acid

Benzoic acid

$\mathrm{NH}_{2}-\mathrm{SO}_{3} \mathrm{H}$
 Sulfamic acid

Potassium hydrogen phthalate

Examples

Alkaine Primary Stsunbstance

$\mathrm{Na}_{2} \mathrm{CO}_{3}$

KHCO_{3}

$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7 \cdot 10} \mathrm{H}_{2} \mathrm{O}$
Borax

COONa
COONa
Sodium oxalate
$>$ Solution of non-primary standard substance.
> Can't be prepared by direct weighing.
> Must be standardized by:

1. Titration against primary st. solution.
2. Titration against standardized secondary st. solution.
3. Gravimetric analysis.

1N SOD. HYDROXIDE

Preparation: Weigh 40 gm to be dissolved in 1L D.W .

Desired N

Exact \mathbf{N} ??

Needs Standardization

1N SOD. HYDROXIDE

Standardization

Oxalic acid Primary standard solution

HCl solution
Standardized by
$\mathrm{Na}_{2} \mathrm{CO} 3$ solution

Determination of EXACT normality:

Exact Normality

Calculation of Correction Factor:

F = Determined Normality / Desired

