

By Dr/Amira AI.Enna
Demonstrator at Pharmaceutical Analytical Chemistry department

Oxidation

-Electron loss

- Increase in oxidation no

Oxidation half reaction

$\mathrm{Fe}^{2+}=\mathrm{Fe}^{3+}+\mathrm{e}^{-}$
Fe^{2+} is reducing agent or reductant (electron donor)

Reduction

- Electron gain
-decrease in oxidation no

Reduction half reaction
$\mathrm{Ce}^{4+}+\mathrm{e}^{-}=\mathrm{Ce}^{3+}$
Ce^{4+} is oxidizing agent or oxidant (electron acceptor)

Overall redox reaction

$\mathrm{Fe}^{2+}=\mathrm{Fe}^{3+}+\mathrm{e}^{-}$Oxidation half reaction
 $\mathrm{Ce}^{4+}+\mathrm{e}^{-}=\mathrm{Ce}^{3+} \quad$ Reduction half reaction

Overall redox reaction

Oxidation half reaction
Reduction half reaction

$$
\mathrm{Fe}^{2+}+\mathrm{Ce}^{4+}=\mathrm{Fe}^{3+}+\mathrm{Ce}^{3+}
$$

Overall redox reaction

Oxidizing agents

Reducing agents

$\cdot \mathrm{KMnO}_{4} \longrightarrow \mathrm{Mn}^{2+}$
$\cdot \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{Cr}^{3+}$
${ }^{\bullet} I_{2} \longrightarrow 1^{-}$

- $\mathrm{Ce}^{4+} \longrightarrow \mathrm{Ce}^{3+}$
- Oxalic acid $\longrightarrow \mathrm{CO}_{2}$
$\cdot \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
- $\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}$
$-\mathrm{AsO}_{3}{ }^{3-} \longrightarrow \mathrm{AsO}_{4}{ }^{3-}$

How to balance redox equations

Example 1: oxidation of Fe^{2+} by $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$

Oxidation half equation

$\mathrm{Fe}^{2+}=\mathrm{Fe}^{3+}$

Oxidation half equation

$\mathrm{Fe}^{2+}=\mathrm{Fe}^{3+} \quad \mathrm{M} . \mathrm{B}$.

Oxidation half equation

$\mathrm{Fe}^{2+}=\mathrm{Fe}^{3+}$
C.B.
$+2$ +3

Oxidation half equation

$\mathrm{Fe}^{2+}=\mathrm{Fe}^{3+}+\mathrm{e}^{-}$
C.B.
$+2 \quad+3-1=+2$

Reduction half equation

$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}=\mathrm{Cr}^{3+}$

Reduction half equation

$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}=\mathrm{Cr}^{3+}$

\[

\]

Reduction half equation

$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}=2 \mathrm{Cr}^{3+}$
M.B.
1.Cr
$2 . \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}$
3. $\mathrm{H} \rightarrow \mathrm{H}^{+}$

Reduction half equation

$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}=2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ M.B. 1.Cr $2.0 \rightarrow \mathrm{H}_{2} \mathrm{O}$ 3. $\mathrm{H} \rightarrow \mathrm{H}^{+}$

Reduction half equation

$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}=2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$

\[

\]

Reduction half equation

$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}=2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
C.B.

$$
-2+14=+12
$$

$$
+6
$$

Reduction half equation

$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-}=2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \quad$ C.B.

$$
-2+14-6=+6
$$

$+6$
$\mathrm{Fe}^{2+} \quad=\mathrm{Fe}^{3+}+\mathrm{e}^{-} \times 6$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-}=2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$6 \mathrm{Fe}^{2+} \quad=6 \mathrm{Fe}^{3+}+6 \mathrm{e}^{-}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-}=2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$

Oxidation half equation

Reduction half equation
$6 \mathrm{Fe}^{2+}$

$$
=6 \mathrm{Fe}^{3+}+6 \varnothing
$$

Oxidation half equation
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{C}^{-}=2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \quad$ Reduction half equation $6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}=6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$6 \mathrm{Fe}^{2+}$

$$
=6 \mathrm{Fe}^{3+}+6 \nprec
$$

Oxidation half equation
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{C}^{-}=2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \quad$ Reduction half equation
$6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}=6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
м.в.

$$
+12-2+14=+24
$$

$$
18+6=+24
$$

Overall redox equation:

$6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}=6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$

How to balance redox equations

Example 2: oxidation of oxalate by $\mathrm{MnO}_{4}{ }^{-}$

Oxidation half equation

$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=\mathrm{CO}_{2}$
$\left.\right|_{\mathrm{COO}} ^{\mathrm{COO}}$

Oxidation half equation

$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2}=\mathrm{CO}_{2}$

$$
\begin{aligned}
& \text { M.B. } \\
& \text { 1.C } \\
& 2 . \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O} \\
& 3 . \mathrm{H} \rightarrow \mathrm{H}^{+}
\end{aligned}
$$

Reduction half equation

$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=2 \mathrm{CO}_{2}$

$$
\begin{aligned}
& \text { M.B. } \\
& \text { 1.C } \\
& \text { 2. } \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O} \\
& 3 . \mathrm{H} \rightarrow \mathrm{H}^{+}
\end{aligned}
$$

Reduction half equation

$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=2 \mathrm{CO}_{2}$ M.B. 1. Cr $2 . \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}$ 3. $\mathrm{H} \rightarrow \mathrm{H}^{+}$

Oxidation half equation

$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2}=2 \mathrm{CO}_{2}$
C.B.
-2
zero

Oxidation half equation

$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=2 \mathrm{CO}_{2}+2 e^{-}$
C.B.
-2

$$
0-2=-2
$$

Reduction half equation

$\mathrm{MnO}_{4}^{-}=\mathrm{Mn}^{2+}$

Reduction half equation

$\mathrm{MnO}_{4}^{-}=\mathrm{Mn}^{2+}$

M.B.
1.Mn
$2 . \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}$
$3 . \mathrm{H} \rightarrow \mathrm{H}^{+}$

Reduction half equation

$\mathrm{MnO}_{4}{ }^{-}=\mathrm{Mn}^{2+}$

M.B.
1.Mn
$2 . \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}$
$3 . \mathrm{H} \rightarrow \mathrm{H}^{+}$

Reduction half equation

$\mathrm{MnO}_{4}{ }^{-}=\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \text { M.B. } \\
& \text { 1.Cr } \\
& 2 . \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O} \\
& 3 . \mathrm{H} \rightarrow \mathrm{H}^{+}
\end{aligned}
$$

Reduction half equation

$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}=\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \text { M.B. } \\
& \text { 1.Cr } \\
& 2 . \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O} \\
& 3 . \mathrm{H} \rightarrow \mathrm{H}^{+}
\end{aligned}
$$

Reduction half equation

$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}=\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
C.B.

$$
-1+8=+7
$$

$$
+2
$$

Reduction half equation

$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}=\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
C.B.

$$
-1+8-5=+2
$$

$$
+2
$$

$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}$

 $\times 5$$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}=\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
$\times 2$

$5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=10 \mathrm{CO}_{2}+10 \mathrm{e}^{-}$

Oxidation half equation

$2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 \mathrm{e}^{-}=2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$ Reduction half equation

$5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$

$$
=10 \mathrm{CO}_{2}+10 \mathrm{e}
$$

Oxidation half equation
$2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+1 \varnothing \mathrm{e}^{-}=2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$ Reduction half equation
$5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}=10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
$5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ $=10 \mathrm{CO}_{2}+10 \mathrm{e}-$

Oxidation half equation
$2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+1 \varnothing \mathrm{e}^{-}=2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$ Reduction half equation
$5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}=10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
M.B.

$$
-10-2+16=+4
$$

$+4$
C.B.

Overall redox equation:

$$
5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}=10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}
$$

Detection of E.P in redox titration

1) Specific indicators:
e. g_{1}. starch with iodine
e. g_{2}. SCN^{-}with Fe^{3+}

2) self indicators:

e.g. $\mathrm{KMnO}_{4} \longrightarrow \mathrm{Mn}^{2+}$
purple
colorless
3) Redox indicators:

They have 2 forms with 2 different colors:
Oxidized form \& reduced form
e.g. 1.Diphenyl amine
2.0-phenanthroline-iron complexes

Standardization of $0.1 \mathrm{~N} \mathrm{KMnO}_{4}$ by 0.1 N sodium oxalate

$$
5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}=10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}
$$

Faint pink color persists for about $1 / 2 \mathrm{~min}$ after shaking

$$
\mathrm{N} . \mathrm{V}=\mathrm{N}^{\prime} . \mathrm{V}^{\prime}
$$

Sodium oxalate

$$
\begin{array}{rlr}
N=0.1 & N^{\prime}=? \\
V=20 & V^{\prime}=E . P
\end{array}
$$

N.B.1. at the beginning of titration, the oxidation of oxalic acid by KMnO_{4} proceeds very slowly until enough manganous ions are formed to catalyse the subsequent oxidation. Then, the reaction between oxalic acid \& KMnO_{4} proceeds relatively rapidly
N.B.2. the permanganate end point is not permanent, the pink color fades slowly, because the reducing matter in the water, dust particles,etc..., reduce this slight excess of permanganate \& the color of the E.P fades away

