

Research Article

Available online <http://www.ijapbs.in>

**DEVELOPMENT OF NEW SPECTROPHOTOMETRIC METHOD FOR THE
ESTIMATION OF GLICLAZIDE**

**Rajeshree Panigrahi^{1*}, Saiprasanna Behera¹, Prasanta Kumar Choudhury¹,
Gitanjali Mishra²**

Lecturer in Royal College of Pharmacy and Health Sciences¹

Principal in St. Ann's College of Pharmacy²

HOD in Dept. of Zoology, Berhampur University³

Received: 5th January 2012, Revised and Accepted: 23rd January 2012

***Corresponding author:** ranuroyal@gmail.com

Phone No. - 09438251715

ABSTRACT

Simple, sensitive and specific Spectrophotometric method was developed and validated for quantification of Gliclazide in tablet dosage form. Drug showed the absorption maxima at 227 nm and was linear for a range of 5-30 mcg/ml with a correlation coefficient of 0.9997. The validation of the above method was done by carrying out precision and accuracy studies. The percentage recovery was found to be 99% and showed good repeatability with relative standard deviation less than 2. So, the proposed method can be applied for the routine analysis of Gliclazide from formulations.

Keywords: Spectrophotometric estimation, Gliclazide.

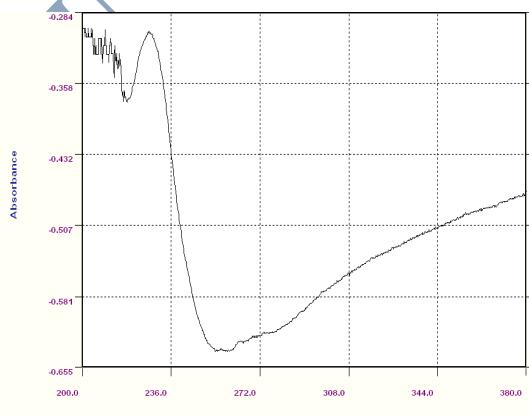
INTRODUCTION

Gliclazide, [1-(3-azabicyclo (3, 3, 0) oct-3-yl)-3-p-tolylsulfonylurea] is a second generation hypoglycaemic sulfonylurea which is useful in the treatment of non-insulin dependent diabetes mellitus (NIDDM)¹. Prior reports reveal that the drug shows good tolerability, low incidence of hypoglycaemia, and a low rate secondary failure². In addition, it has a potential for slowing the progression of diabetic retinopathy. For the reasons stated Gliclazide appears to be a drug of choice in long term sulfonylurea therapy for the control of NIDDM^{2,3}. Gliclazide is a white

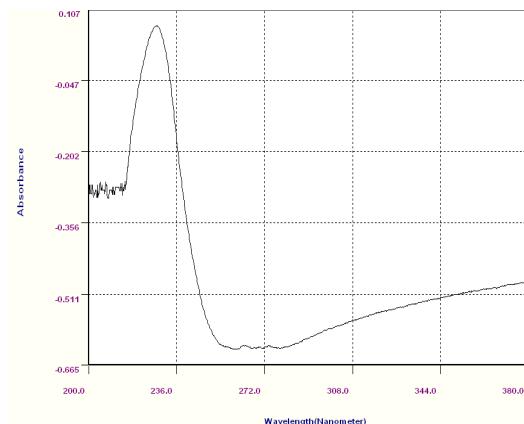
crystalline powder, relatively insoluble in water. The pKa of Gliclazide is 5.8. Gliclazide exhibits slow GI absorption rate and inter individual variations of its bioavailability³. The slow absorption rate of drug usually originates from either poor dissolution of drug from the formulation or poor permeability of drug across GI membrane. Gliclazide causes hypoglycemia by stimulating insulin release from pancreatic β cells. Simple and reproducible Spectrophotometric method has been developed for the estimation of Gliclazide in pure and its pharmaceutical

formulations using 0.1N NaOH. The maximum absorbance was observed at 227 nm. Beer's law was obeyed in the concentration range of 5-30 μ g/ml. The standard graph values are summarized and standard graph is plotted.

MATERIALS AND METHODS


Instrumentation and Materials:

All the spectral and absorbance measurements were made on an ELICO SL-59 UV-VIS spectrophotometer by using 1 cm quartz cells. Gliclazide used in the present investigation was purchased from Aurovindopharma, Hyderabad. Sodium Hydroxide used was of analytical grade.


Scanning and determination of maximum wavelength:

In order to ascertain the wavelength of maximum absorbance (λ_{max}) of the drug, solution of drug concentration 10 μ g/ml and 20 μ g/ml in 0.1N NaOH were scanned using spectrophotometer within the wavelength range of 200-350 nm against 0.1N NaOH as blank. The absorbance curve showed characteristics absorbance maximum at 227nm as shown in Figure – 1 and Figure – 2.

Figure: 1 It shows the scanning report for 10mcg/ml for gliclazide using 0.1n NaOH solution having λ_{max} as 227.2 and absorbance as 0.304nm

Figure: 2 It shows the scanning report for 20mcg/ml for gliclazide using 0.1n naoh solution having λ_{max} as 227.7 and absorbance as 0.070 nm respectively

Preparation of standard solution

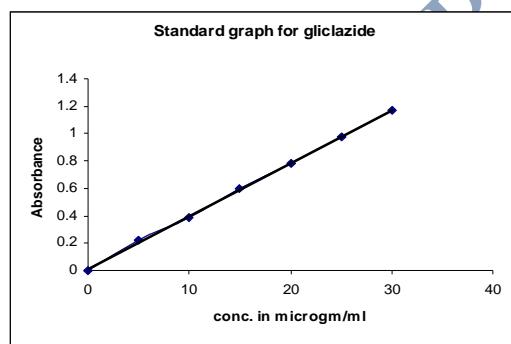
Stock solution of 1mg/ml (Pure drug) was prepared by dissolving 25 mg of Gliclazide in 25 ml of 0.1N NaOH. Further dilutions were made with 0.1N NaOH to get working standard stock solution of 100 μ g/ml.

Assay of Gliclazide in pharmaceutical dosage forms

Aliquots of working standard Gliclazide solution (0.5-5 ml: 1 ml = 100 μ g) were transferred into a series of 10 ml graduated test tubes. Then the final volume was made up to 10 ml with 0.1N NaOH and absorbance was measured at 227 nm against a reagent blank. Requisite amount between 5-30 μ g/ml of drug solution was taken and the absorbance was measured at 227 nm. The drug content in pharmaceutical dosage form was calculated using the standard curve. Results are reported in Table – 1 and calibration curve is plotted as shown in Figure- 3.

Validation^{4,5}.

The methods were validated with respect to Linearity, Accuracy and Precision.


Accuracy^{6,7}

To determine the accuracy of drug, recovery studies were carried out by adding different amounts (80%, 100% & 120%) of bulk samples of Gliclazide within the linearity range were taken and added to the pre-analyzed formulation of conc. 10 μ g/ml. From that percentage recovery values were calculated. The results were shown in Table – 2.

Table 1. Calibration Curve of Gliclazide
It shows the absorbance for different concentrations of drug solution

Sl. no	Concentration (μ g/ml)	Absorbances ($\lambda_{\text{max}}=227\text{nm}$)
1	0	0
2	5	0.22
3	10	0.39
4	15	0.601
5	20	0.781
6	25	0.997
7	30	1.174

Figure 3. It shows the statistical evaluation of the calibration plot

Precision

The precision of the method was ascertained by actual determination of eight replicates of fixed concentration of the drug within the Beer's range and finding out the absorbance by the proposed

method. From these absorbance mean, standard deviation (S.D), % relative standard deviation (%RSD) and percentage range of errors (at 0.005 and 0.01 confidence limits) was calculated. The reading was shown in Table – 3. Further optical characteristics and precision was calculated and reported in Table – 4.

Table 2. Accuracy- It shows the accuracy and % recovery studies of gliclazide

S1:80%	8	10	99.23	Mean = 99.14
S2:80%	8	10	98.46	S.D = 0.6443
S3:80%	8	10	99.74	%RSD=0.64%
S4:100%	10	10	98.46	Mean = 98.80
S5:100%	10	10	99.48	S.D= 0.588
S6:100%	10	10	98.46	%RSD=0.59%
S7:120%	12	10	99.48	Mean = 99.31
S8:120%	12	10	99.48	S.D= 0.2944
S9:120%	12	10	98.97	%RSD=0.29%

Table 3. Precision- It shows the precision studies of gliclazide

Sl.no	Concentration (μ g/ml)	Absorbance (227 nm)	Statistical analysis
1	10	0.389	Mean = 0.387 SD= 0.0027% RSD = 0.693
2	10	0.390	
3	10	0.388	
4	10	0.387	
5	10	0.390	
6	10	0.382	
7	10	0.386	
8	10	0.390	

Table 4. Optical characteristics - It shows the optical characteristics of gliclazide

Parameters	Values
Absorption maxima (nm)	227nm
Beer's law limit (μg/ml)	5-30
Molar Absorptivity (L mol ⁻¹ cm ⁻¹)	14.19x10 ⁶
Sandell's Sensitivity	0.022 (μg/cm ² /0.001 absorbance unit)
% Relative standard deviation	0.481
Correlation coefficient	0.9998
Regression Equation (Y*) Slope(a)	0.0388
Intercept(b)	0.0104

Y* = a X +b where 'X' is Concentration in μg/ml. and Y* is absorbance unit

RESULTS AND DISCUSSION

A UV-Spectrophotometric method was developed for Gliclazide determination. The analytical method is simple, sensitive, rapid and specific accurate, precise and reproducible and could be used for the routine estimation of quality control of Gliclazide in bulk and pharmaceutical dosage forms. Linear regression of absorbance on concentration gave the equation Y = 0.0388X + 0.0104 where X is the concentration in μg/ml and Y is the absorbance at 227nm with correlation coefficient R = 0.9997. This indicates a good linear relationship.

The proposed method shows absorption maxima at 227 nm obeyed beer's law in concentration range of 5-30 μg/ml. the percentage recovery value (99%) indicates that there is no interference of the excipients in the formulation. The low value of standard deviation and coefficient of variations indicates that the proposed method was precise. All statistical data prove validity of the

proposed method, which can be applied in industries for routine analysis of this drug from tablets.

ACKNOWLEDGEMENTS

The authors are thankful to Aurovindopharma, Hyderabad for providing gift sample of Gliclazide, and also to the management of Royal College of Pharmacy and Health Sciences for providing necessary facilities to carry out the work successfully.

REFERENCES

1. Reynolds JEF. Martindale: The Extra Pharmacopoeia, The Pharmaceutical Press, London, pp 279–280.
2. Harrower AD. Comparison of efficacy, secondary failure rate and complications of sulfonylurea. J. Diabetes Its Complications. 1994; 8: 201–203.
3. Palmer KJ, Brogden RN. Gliclazide, an update of its pharmacological properties and therapeutic efficacy in NIDDM Drugs. 1993; 46: 92–125.
4. Taverniers I, Loose MD, Bockstaele EV. Trends in quality in the analytical laboratory I Traceability and measurement uncertainty of analytical results, Trends in Analytical Chemistry. 2004 ; 23 : 480-490.
5. Wankhede SB, Gupta KR, Wadodkar SG. Indian J. Pharm. Sci. 2005; 67: 96.
6. Palled MS, Rajesh PMN, Chatter M, Bhatt AR. Indian J. Pharm. Sci. 2005; 65: 110.