Suggested research topics Winter semester of the academic year 2019/2020

Course name in Arabic:	Analytical Chemistry
Course name in English:	Abd Al-Motaleb Mosad Ramadan
Professor Dr.:	Third
Level:	
Department:	Manufacturing and biotechnology program

No	Research title	Research items
1	Methods of expressing the concentration of solutions	1- Define some relevant terms such as: Concentration, Solute, True solution, Analyte, Mole, The unite of mass 2- Percent composition (\%): (\%W/W \%W/V \%V/V) 3- Molar solution (M), Normality, define, explain, give examples based on your studied course 4- 1 milliliter $(\mathrm{ml})=\mathrm{cm}^{3}$; and one liter $=$ \qquad $\mathrm{cm}^{3}=\ldots \ldots \ldots . . \mathrm{ml}$ 5- How many grams of NaCl are required to prepare 80 grams of solution of NaCl its concentration is 5% ? 6- If 280 ml of a 3 M sodium hydroxide solution is diluted to give 0.7 M solution; What is the volume of the resulting diluted solution? What is the volume of distilled water added to the original solution? 7- Hydrolys is of salts
2	The relation between the concentrations of solutions	1- Normal solution (N), molarity, mole fraction 2- Write the mathematical relationship in which the methods of concentrations changed to another and give examples and define its terms 3- Determine the molarity (M) and normality (N) of 62% of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, the density is $1.52 \mathrm{~g} / \mathrm{cm}^{3}$? 4- Dilution of solutions 5- Mixing law, explain and give examples 6- Calculate the amounts of 90% and 10% solutions of $\mathrm{H}_{2} \mathrm{SO}_{4}$ required for preparing 1600 g of 40% solution? 7- Standard Solution Requirements

Course Instructor:

Name: Prof. Dr. Abd Al-Motaleb Mosad Ramadan
Signature: Prof. Dr. Abd Al-Motaleb Mosad Ramadan

No	Research title	Research items
3	Standard Solution	1-Primary Standard solution; 2-Features of a primary standard substances; 3-Standard Solution Requirements; 4- Secondary Standard solution; 5- Ionization of Water and the pH Scale; 6- Electrolytic Dissociation 7- Write the mathematical relationship in which the methods of concentrations changed to another and give examples and define its terms How many grams of 90% solution of H 2 SO 4 must be added to 500 grams of 10% solution to prepare 70% solution?
4	Acids and Bases	1- Arrhenius definition 2 - The Bronsted- Lowry theory 3- Amphoteric substances 4 -Lewis definition of acid and bases 5- Strength of Acids and Bases 6- Calculate the amounts of 90% and 10% solutions of $\mathrm{H}_{2} \mathrm{SO}_{4}$ required for preparing 1600 g of 40% solution? 7- Mineral acid, Alkalinity of acid, Organic acid, Alkali, Acidity of alkali 8- Acid-Base Indicators
5	Some General Aspects of Volumetric Analysis	Volumetric analysis, Equivalence point End point, Titrant, Standardization, Indicator Titration, Titration error, Types of Titrations Direct Titration, Back titration; Back titration is necessary when Classification of reactions in volumetric analysis

Course Instructor:

Name: Prof. Dr. Abd Al-Motaleb Mosad Ramadan
Signature: Prof. Dr. Abd Al-Motaleb Mosad Ramadan

No	Research title	Research items
$\mathbf{6}$	Acid Base Titrations	Neutralization reaction; Neutralization point Neutralization (Titration) Curves; Titration Curve of Strong Acid and Strong Base Titration Curve of weak acid and strong base Titration Curve of weak base and strong acid Titration Curve of weak base and weak acid Neutralization curve of polyprotic acid with strong base; Displacement Titrations; Titration of carbonate ion with a strong acid; Acid-Base Indicators; The pH range of indicators; Indicator range
$\mathbf{7}$	Buffer Solutions	Acidic buffer solution Mechanism of Buffering
Buffer Capacity		
Alfaline buffer solution		
Buffer mechanism		
Hydrolysis of salts		

Course Instructor:

Name: Prof. Dr. Abd Al-Motaleb Mosad Ramadan

