Kafrelsheikh University Faculty of Engineering

Department: Electrical Engineering Year: First Electrical (R-2007)

Subject: Electrical instruments & Measurements

Student name:

Final Exam of 2nd Semester 2017/2018

Time allowed: 3 hours Full Marks: 90 Exam Date: 23/05/2018 Number of Pages: 2 Pages

Relationship between Course Intended learning outcomes (ILOs) and National Academic Reference Standards (NARS)

Field	National Academic Reference Standards (NARS)		
	Knowledge & Understanding	Intellectual Skills	Professional Skills
academic standards that the course contribute in achieving it	a.1, a.5	b.1, b.2,b.3	c.1, c.2, c.5

Attempt to solve the following problems as much as you can:

P-1	25 Marks
A	a- What are the main differences between transducers and sensors?
(15)	b- Briefly describe the Thermistors; resistance thermal detector and strain gauge.
402	c- The time base signal in a CRO is
10 17 th	d- Draw the block diagram of a CRO and explain the different components.
	e- Sketch and explain the basic principle of digital frequency and velocity meters?
	f- sketch and explain the Block diagram of a digital multimeter?
	g- The resistance of a thermistor is 800 Ω at 50°C and 4 k Ω at the ice-point. The
13.70	characteristic constants (A, B) for the thermistor and the variations in resistance
	between 30°C and 100°C are (Complete)
	h- In strain gauges. The Poisson's ratio and gauge factor are
D (5)	(Complete)
B (5)	Expain the basic requirements of a transducer?
C	The output of an LVDT is connected to a 5 V voltmeter through an amplifier of
(5)	amplification factor 250. The voltmeter scales has 100 divisions and the scale can be
9	read to 1/5th of a division. An output of 2 mV appears across the terminals of the LVDT
	when the core is displaced through a distance of 0.5 mm. Calculate: the sensitivity of the
	LVDT, that of the whole set up, and the resolution of the instrument in mm.
P-2	15 Marks
A	Mention in brief:
(6)	measurement concept, undesrible static characteristics of measuring instruments,
	caliberation process?
В	A voltmeter of 500Ω resistance and a milliammeter of 0.5Ω resistance are used to
(9)	measure two unknown resistances by voltmeter-ammeter method. If the voltmeter reads
	50 V and milliammeter reads 50 mA in both the cases, calculate the percentage error in
	the values of measured resistances for the following two cases:
44	Case 1, the voltmeter is put across the resistance and the milliammeter connected in
	series with the supply,
	Case 2, the voltmeter is connected in the supply, side and milliammeter connected
	directly in series with the resistance.
	Give an alternative method for measuring the above resistance.

P-3	20 Marks		
A	How do you perform the follows:		
(5)	1) Measuring the resistances.		
tion of the last	2) Compensating the temperature in PMMC instruments.		
一次,然后	3) Measuring the voltage across two parallel resistors.		
7-1 retard	4) Measuring the source frequency.		
	5) Compensating the ohmmeter internal battary voltage shortage.		
B	The power dissipated in a car headlight is calculated by measuring the d.c. voltage drop		
(5)	across it and the current flowing through it. If the possible errors in the measured voltage		
255	and current values are \pm 5% and \pm 3% respectively, Calculate the likely possible		
	maximum and minimum error in the resistance and power value deduced.		
C	-		
传统的现在分词	Desgin a multimeter of internal resistance is 100 Ω with sensitivity of 2.5 k Ω /V,		
(10)	contains: A voltameter to measure ranges 0-5, 0-10,0-20, and 0-50 volts, An ammeter to		
医性性	measure ranges 0-10 mA, 0-20 mA, 0-200 mA, and An ohmmeter measures the ranges		
	$0-100 \Omega$, $0-250 \Omega$, $0-2000 \Omega$. Consider internal battery of 9 V.		
P-4	15 Marks		
A (5)	<u>Discuss</u> the dynamic behaviour of the permant magnetic moving coil instruments.		
B	In the circuit shown in Figure 1, the current flowing between A and B is measured by an		
(10)	ammeter whose internal resistance is 100Ω .		
A 24	1) What is the measurement error caused by the instrument resistance?		
	2) Plot the ammeter error versus the series ammeter resisance then obtain its value that		
	optimize the instrument error.		
(大)	3) If you want to measure the voltage between terminals AB, deduce the percentage		
	error formula in terms of ameter error and internal resistance of voltmeter.		
P-5	15 Marks		
A	Explain the differences between each of the following pairs:		
(6)	1) PMMC and moving iron instruments.		
4.2	2) Multi range ammeter & Multi range voltmeter instruments.		
B	For a Maxwell bridge, Consider R_2 =80 Ω , R_1 = 100 Ω , R_3 = 160 Ω , C=25 mF and Supply		
(9)	frequency is 50 Hz. The requirement is to derive an expression for Ru and Lu under		
12-1	balance conditions for the following cases then obtain with possible comments:		
The Same	1) The RC in branch AD in parllel.		
	2) When RC elements are now in series.		
To Take	3) Check the balance when the capacitor c is opened.		
Will females	Arnmotor 11		
	2000 1600 V		
	(100 11)		
25. 5			
三 (李字符)	+ \$500 cm \Amps \ Z_2 Z_3		
C. 15 Lane			
143 %	3000		
	Figure 2: Maxwell bridge		
	Figure 1		

Best regards
Associate Prof. Dr. Ragab El Sehiemy& Assistant Prof. Dr. Bedir Yousif