Kafrelsheikh University
Faculty of Engineering
Electrical Engineering Department
Final Exam, 2018 - 2019
Subject: Modeling and Simulation.

Year: 3th Computer Engineering & systems

Academic Number: ECS3214

Date: 29 / 5 / 2019 Time: 3 Hours.

Full Mark: 100, 2 pages

This exam measures ILOs no: a5, a12, a16, b2, b6, b9, b12, b14, c3, c11, c16, d1, d3, d4, d5, d6, d7, d8

1. Given the network figure below, find the transfer function, $I_2(s)/V(s)$. [15 Marks]

2. Find the transfer function, $G(s) = X_2(s)/F(s)$ for the translational mechanical network shown in Figure below: [15 Marks]

3. Find State Space Representation model using cascaded method. [15 Marks]

$$y^{-} + 8y^{-} + 19y^{-} + 12y = 5u$$

4. Obtain both analytically and computationally the rise time, peak time, maximum overshoot, and settling time in the unit-step response of a closed-loop system given by: [15 Marks]

$$\frac{C(s)}{R(s)} = \frac{36}{s^2 + 2s + 36}$$

5. A unity feedback control system has the process: [15 Marks]

$$G(s) = \frac{1}{S(S+1)(S+3)}$$

Design a PID controller using Ziegier-Nichols closed loop method.

Question #2: Choose the correct answer: [10 Marks]

- 1- The input of a controller is:
 - a. Sensed signal
- b. Error signal
- c. Desired variable value
- d. Signal of fixed amplitude not dependent on desired variable value

2- PID controller is also known as

- a. Three term controller
- b. two term controller

c. Four term controller

- d. proportional controller
- 3- The system with the open loop transfer function 1/s(1+s) is:
 - a. Type 2 and order 1

b. Type 1 and order 1

c. Type 0 and order 0

d. Type 1 and order 2

- 4- The integral control:
 - a. Increases the steady state error
- b. Increases the noise and stability
- c. Decreases the steady state error
- d. Decreases the damping coefficient
- 5- The time constant of the first order system means that the output is reached to ______ its steady state value
 - a. 98%

b. 63%

c. 50%

d. 15%

Question #3: [15 Marks]

Consider the temperature control system shown below. The problem is to control the temperature y inside the chamber. The chamber is heated by steam. The flow q of hot steam is proportional to the valve opening x; that is, $q=k_qx$. The valve opening x is controlled by a solenoid and is assumed to be proportional to the solenoid current i; that is, $=k_si$. It is assumed that the chamber temperature y and the steam flow q are related by $\frac{dy}{dt} = -cy + k_cq$ where c depends on the insulation and the temperature difference between inside and outside the chamber. Find $\frac{Y(s)}{R(s)}$

************ With Bast Wishes **********

Dr. Wessam Fikry, Committee of Correctors and Testers