Kafrelsheikh University Faculty of Engineering

Department: Electrical Engineering Year: 2nd year (2007) 2018-2019

Subject: Energy Conversion Name: Dr. Amlak Abaza.

Date: 23 -5-2019. Time Allowed: 3 hrs. Full Mark: 90 Marks.

Final 2nd Term Exam: 2 pages Academic Code: EPM 2203,

Dr. Mohamed Abdelwanees & Dr Sherif Emam

This Exam measures the ILOs [a.], a.4,a.15, b.1, b.2, b.3, b.5, and c.1,c.2, c.3, and c.4

Answer the Following Questions:

Question One: (25 Mark) [measures the ILOs of all, a.4, b.1, b.5, and c.1.]

- a) <u>Derive</u> the relationship between mutual inductance and self inductances of magnetically coupled two coils of N_1 and N_2 turns.

 [6Mark/al/2]
- b) With the aid of B-H relation of a non-linear magnetic material, <u>show</u> the effect of hysteresis in excitation current waveform.

 [7Mark/a 4.1, and b 1.4]
- c) The device shown in the Fig. 2 is a practical form of magnet. It is cylindrical about a horizontal axis. The coil has 1300 turns and carries a constant current of 2.5 A. If the mmf in the iron is neglected.

 [12Mark/a4Tb5] Land c11.]
 - i). <u>Compute</u> the flux densities, in Tesla, between the working faces of the center core and the plunger for gaps g=0.5, 1, and 2 cm.
 - ii). Compute the corresponding values of the coil inductance, in henries.
 - iii). Compute the energy stored in the magnetic field for each value of the air gap.

Question Two: (20 Mark) [measures the II Os of a.4, b.5, c.1, c.2, c.3, and c.4]

- a) In a doubly excited magnetically linear system with saliency associated with both the rotor and stator, <u>derive</u> an expression for the induced voltage in the system, <u>explaining</u> both motional and transformer induced voltages.
- b) Fig. 2 shows a magnetic circuit of iron of high permeability. Two air gaps each of length g and area A_g and a permanent magnet (PM) of length l_m and area A_m .
 - i). <u>Determine</u> the necessary condition to minimize the volume of PM for a desired value of the flux density in the air gap.
 - ii). If the maximum energy product occurs at $B_m = 1.0$ T and $H_m = -40$ kAT/m, <u>Find</u> the minimum magnet volume required to achieve an air-gap flux density of 0.8 T when the air gap dimensions are Ag = 2.0 cm² and g = 0.2 cm. [SMark **b.5.1**, c.1.1] and c.3.1]
- c) For a linear translational electromechanical energy system, <u>derive</u> an expression for current, flux linkage and force in terms of stored energy and coencrgy. [6Mark/a.42 b 3.1 and c 1.1]

Question Three: (25 Mark) [measures the ILOs of a.l. a.4, a.15, b.2, b.3, and c.f, c.3]

- a) <u>Explain</u> the operation conditions and construction of the salient-pole synchronous machine.

 [SMark/a] *Land 6.2]
- b) Consider a doubly-excited system with cylindrical stator and salient pole rotor. The excitation via the rotor is de excitation, I_r , and it is ac excitation via the stator; given by:

 $i_s(t) = I_s \cos(\omega t + \phi)$

Find:

- i. The instantaneous torque on the rotor in terms of the coil current and the rotor position.
- ii. The average torque, if the rotor rotates at a constant angular velocity of ω (i.e. it is equal to the current angular frequency). Assume that the rotor position at t=0 is equal to zero.

[40Mark/a.4.1. a.45.1.b.2.1. and c.3.1]

c) As shown in Fig. 3, an N-turn electromagnet is used to lift a slab of iron of mass M. The surface roughness of the iron is such that when the iron and the electromagnet are in contact, there is a minimum air gap of g_{min}=0.18 mm in each leg. The electromagnet cross-sectional area A_c=32cm².

<u>Calculate</u> the minimum coil current which must be used to lift a slab of mass 95 kg against the force of gravity. Neglect the reluctance of the iron.

[10Marka] 1.a 151 b2 1.and c 3.11

Question Four: (20 Mark) [measures the ILOs of a.1 and c.1]

a) **Compare** between mono crystalline and poly crystalline solar panels.

[5Mark/a,1.1]

b) <u>Design</u> complete off grid solar power station for the following residential loads: 15 Mark/e.1.1

Qty.	Rated Power [W]	Working Hours [Hrs/day]	Additional Data
2	70	7	Single battery capacity is: 12V/100Ahr
6	12	7	Single PV panel peak power is: 250 W.
1	150	9	Depth of Discharge is: 50%.
. 1	105	4	Autonomy day is: 1.
1	350	2	Average sun hours per day are: 5 hours.
1	400	1	The input voltage of the inverter is: 24V
	2	Power [W] 2 70 6 12 1 150 1 105 1 350	Power [W] [Hrs/day] 2 70 7 6 12 7 1 150 9 1 105 4 1 350 2

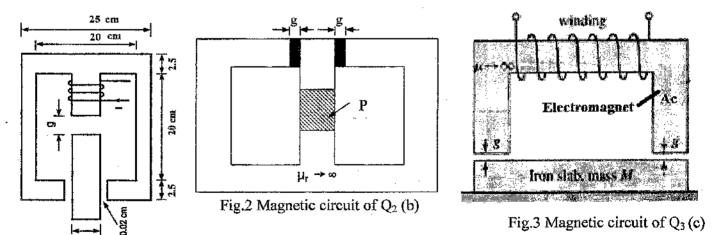


Fig.1 Magnetic circuit of Q1 (b)

Best Wishes

Committee of corrections and Testers

Page2