Kafr Elshiekh University
Faculty of Engineering
Department of
Physical and Mathematical Engineering
First Year

28- 02- 2021 3 hours 90 Marks Final exam: 8 pages

Answer the following questions:

Use	ful data: q=1.6*10 ⁻¹⁹ C,	c=3*10 ⁸ m/	s, h=6.626*10 ⁻³⁴ J.s,	m _e =9.11*10 ⁻³	kg, Cu:E _f =7.05 ev,	k _B =	8.617*10 ⁻⁵ ev.k ⁻¹
	Os: a1,a2,b1,c2)						
•		ibsorbs the r	adiations incident on it,	, is :			
i.	(A) Compton effect	(B)	Work function	(C)	Wave function	(D)	A black body
	$\lambda_{\text{max}} * T = 2.898 * 10^{-3} \text{m.l}$	k					
2.	(A) Stefan's law	(B)	Wien's displacement	law (C)	Compton effect	(D)	Photoelectric effect
	λ_{\max} is:						
3.	(A) The time at the of the curve	peak (B)	The temperature at the peak of the curve	e (C)	The wavelength at the peak of the curve	(D)	The frequency at the peak of the curve
	thermometer is 35°C		ion emitted by the hum	an body when	the skin temperatu	re mea	asured by the ear
	- The absolute			(C)	308°C	(D)	35°C
4.	(A) 308 K	(B)	35 k	(C)	300 C	(D)	33 C
_	$-\lambda_{\max} =$	(D)	7.0	(C)	8.8µm	(D)	9.8µm
5.	(A) 6.8μm	(B)	7.8µm	(C)			•
	_	ain metailic	surface causes electron	is to be enfitte	d from mose surrac	6 5. 111	is phenomenon is know
6.	as: (A) Compton effect	(B)	Photoelectric effect	(C)	Superconductor	(D)	Meissner effect
		n intensity intensity	· .				
	-ΔV _s	Applied voltag	> 50				
	ΔV_s is:	Applica voltag	50				
7.	(A) stopping freque	ency (B)	Stopping energy	(C)	Stopping potential	(D)	stopping current
	Metail Meta	12 Metal 3					
8.	 F_c is: (A) Total energy Φ is: 	(B)	Kinetic energy	(C)	Cutoff frequency	(D)	Work function
0	(A) Total energy	(B)	Kinetic energy	(C)	Cut off	(D)	Work function

frequency

A sodium metal is illuminated with light having a wavelength of 300 nm. The Φ of the metal is 2.46 ev. Find: - h*f= 1.67ev 4.13ev (A) 589ev (B) 504ev 10. The maximum kinetic energy: 1.67ev (A) 589ev (B) 504ev (D) 4.13ev 11. The cut off wavelength of the sodium: 1.67nm (D) 4.13nm (B) 595nm 12. (A) 504nm The cut off frequency of the sodium: (A) 595*10¹²Hz 4.13Hz (B) 504Hz (C) 1.67Hz (D) 13. X-ray of wavelength λ=0.2 nm are scattered from a block of material. The scattered x-ray are observed at an angle of 45° to the incident beam. Calculate: - λ'-λ== (A) 0.7117*10⁻³ Hz 0.7117*10⁻³ nm (B) $0.2007 \, \mathrm{nm}$ 0.20071 Hz $-\lambda^{*}=$ **(B)** $0.7117*10^{-3}$ Hz (A) $0.7117*10^{-3}$ nm 0.20071 Hz 0.20071nm (C) (D) Calculate the de-Broglie wavelength for an electron moving at 10⁷m/s 9.28*10⁻¹¹m (B) $7.28*10^{-11}$ m 8.28*10⁻¹¹m (A) $6.28*10^{-11}$ m. (C) (D)16. $\Psi = e^{i(kx-\omega t)}$ Ψis: (A) Angular wave (C) Angular (D) Wave function (B) Total energy frequency number k is: (C) Total energy Wave function (A) Angular wave (B) Angular frequency (D) number ω is: Wave function Angular frequency (A) Angular wave Total energy (D) 19. number A free electron has $\Psi = Ae^{i(5e^{10^{20}}x)}$ where x is in meter. Find: - Its de-Broglie wave length: 136 nm (D) 126 nm 20. (A) 136 Pm 126 Pm - Its momentum: $7.52*10^{-24}$ kg.m/s (D) (A) 5.52*10⁻²⁴kg.m/s (B) $6.52*10^{-24}$ kg.m/s $8*10^{-24}$ kg.m/s 21. The probability of finding the particle in the arbitrary interval a \(x \le b \) is: (C) $P_{ab} = \int_{a}^{b} |2\psi| dt$ (D) $P_{ab} = \int_{a}^{b} \sqrt{\psi} dx$ 22. (A) $P_{ab} = \int_{ab}^{b} |\psi^2| \, dx$ $P_{ab} = \int |\psi| \, dx$ An electron is described by $\psi(x) = \begin{cases} 0 & for \ x < 0 \\ Ce^{-x}(1 - e^{-x})for \ x > 0 \end{cases}$ Normalization of $\psi(x)$ is: $\int_{-\infty}^{+\infty} [Ce^{-x}(1-e^{-x})]dx = \int_{-\infty}^{\infty} [Ce^{-x}(1-e^{-x})]^2 dx = 1$ (C) $\int_{0}^{+\infty} [Ce^{-x}(1-e^{-x})]^2 dx = 1$ (D) $\int_{0}^{+\infty} \psi[Ce^{-x}(1-e^{-x})]^2 dx = 1$ The average position <x> for the electron is: $(x) \equiv \int x [cs^{-1}(1-s^{-1})]^2 dx \qquad (C) \qquad (x) \equiv \int y [cs^{-1}(1-s^{-1})]^2 dx \qquad (D) \qquad (x) \equiv \int x [cs^{-1}(1-s^{-1})]^2 dx$ (A) $(z) \equiv \int [(ce^{-z}(1-e^{-z})]^2 dx$

A quantum particle of mass m moves in a potential well of length 2L. Its potential energy is infinite for x<-L and for

x>+L. Inside the region -L<x<L, its potential energy is given by $U(x) = -\frac{\hbar^2 x^2}{mt^2(t^2-x^2)}$

In addition, the particle is in a stationary state that is described by the wave function

$$\Psi(x) = A \left(1 - \frac{x^2}{x^2}\right)$$
 for $-L < x < L$ And $\Psi(0) = 0$ elsewhere.

Determine:

$$-\frac{d\psi}{dx}=?$$

25. (A)
$$\frac{-\hbar^2}{2m} \frac{d^2 \Psi}{dx^2} + U \Psi = E$$
 (B) $-2A \frac{x}{L^2}$ (C) $E = \frac{\hbar^2}{mL^2}$ (D) $-\frac{2A}{L^2}$

26. (A)
$$-2A\frac{x}{L^2}$$
 (B) $\frac{-\hbar^2}{2m}\frac{d^2\Psi}{dx^2} + \Psi = E\Psi$ (C) $E = \frac{\hbar^2}{mL^2}$ (D) $-\frac{2A}{L^2}$

Time independent schrodinger equation is:

27. (A)
$$-2A\frac{x}{L^2}$$
 (B) $E = \frac{\hbar^2}{mL^2}$ (C) $\frac{-\hbar^2}{2m}\frac{d^2\Psi}{dx^2} + U\Psi = E\Psi$ (D) $-\frac{2A}{L^2}$

The energy of the particle in terms of
$$\hbar_{rm}$$
 and L

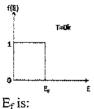
28. (A) $-2A\frac{x}{L^2}$ (B) $\frac{-\hbar^2}{2m}$ (C) $E = \frac{\hbar^2}{mL^2}$ (D) $\frac{2A}{L^2}$

A 30ev electron is incident on a square barrier of height 40ev.

- The probability that the electron tunnels through the barrier calculated by:
9. (A)
$$T = e^{-cL}$$
 (B) $T = e^{+2cL}$ (C) $T = e^{-4cL}$ (D) $T = e^{-2cL}$

- The constant C equal to:

30 (A)
$$15.18*10^9$$
 (B) $16.18*10^9$ (C) $17.18*10^9$ (D) $18.18*10^9$


- The probability that the electron tunnels through the barrier with width 0.1mm is:

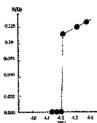
32. (A) 7.61 (B) 8.61 9.61 (D) 0.961 The lowest energy state for the particle in a box is:

33. (A) Total energy (B) The ground state (C) High frequency (D) Low temperature An electron is confined between two impenetrable walls 0.2 nm apart. Determine: The energy level for state n=1

37.7 J The energy level for state n=3

36.

- 37. (A) Total energy
- (B) Ground state
- (C) Fermi energy
- (D) Cut off energy


For copper at 300k calculate the probability that a state with an energy equal to 99% of $E_{\rm f}$ is occupied :

- (A) 300 38.
- (B)

- (C) 9.37
- (D) 0.937

The energy for the electron in a three dimensional box is:

- 39.
- (B) $E = \frac{\hbar^2 \pi^2}{2\pi \epsilon_{\kappa} L^2} (\pi_{\kappa} n_{\gamma} n_{\kappa})^2$
- (C) $E = \frac{\hbar^2 \kappa^2}{2m_e L^2} (n_x + n_y + n_z + n_z)$ $E = \frac{\hbar^2 \kappa^2}{2m_e L^2} (n_x^2 + n_y^2 + n_z^2)$

A material loses its electrical resistivity below a certain temperature. Is:

- Superconductor
- (B) Photoelectric effect
- (C) Compton effect
- Tunneling

Field excluded from the conductor below a certain temperature is:

- (A) Photoelectric effect
- (B) Compton effect
- Meissner Effect
- Tunneling

Maglev transport is an application of:

- Photoelectric effect 42.
- (B) Meissner Effect
- Tunneling (C)
- Compton effect

- Critical temperature at zero magnetic field is: From this fig.

- (A) $T_0=3.7 \text{ k}$
- (B) 2K

- 3.7°C
- 2°C

Critical field at 0k is:

- 44. (A) 3.7
- $B_c(0)=0.0306$
- (C) 2
- 30.6

Critical field at 2k is:

- (A) 0.0216 Tesla
- 0.0306 Tesia (B)
- (C) 3.7 Tesla
- 2 Tesla

46-An oscillator is subjected to a damping force that is proportional to its velocity. A sinusoidal force is applied to it. After a

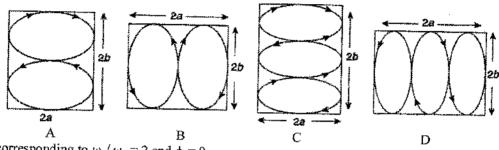
- A. its amplitude is an increasing function of time
- B. its amplitude is a decreasing function of time
- C. its amplitude is constant
- D. its amplitude is a decreasing function of time only if the damping constant is large
- 47-In simple harmonic motion, the magnitude of the acceleration is:
- B. proportional to the displacement
- C. inversely proportional to the displacement
- D, greatest when the velocity is greatest

48-The x and y coordinates of a point each ex	xecute simple harmonic motion. The fi	requencies are the same but the amplitudes
are different. The resulting orbit might be:		
A. an ellipse B. a circle	C. a parabola	D. a hyperbola
49-For an oscillator subjected to a damping for	orce proportional to its velocity:	
A. the displacement is a sinusoidal function of	of time.	
B. the velocity is a sinusoidal function of time	e.	
C. the frequency is a decreasing function of t	ime.	
D. none of the above is true.		
50-Five particles undergo damped harmonic	motion. Values for the spring constar	at k, the damping constant b, and the mass
m are given below. Which leads to the smalle	est rate of loss of mechanical energy?	•
A. $k = 100N/m$, $m = 50g$, $b = 8g/s$		
B. $k = 150 \text{N/m}, m = 50 \text{g}, b = 5 \text{g/s}$		
C. $k = 150N/m$, $m = 10g$, $b = 8g/s$		
D. $k = 200N/m$, $m = 8g$, $b = 6g/s$		
51-A sinusoidal force with a given amplitu	de is applied to an oscillator. At reso	onance the amplitude of the oscillation is
limited by:		
A. the damping force B. the initial	l amplitude C. the initial ve	locity D. none of the above
A sinusoidal wave is traveling toward the	right as shown.	
	A	
	!	$ec{v}$
	+	` →
<u> </u>	-B	
	↓	
	- K − C −	
52-Which letter correctly labels the amplitud		•
A B	C D	
53-Which letter correctly labels the waveleng	_	
A B	C	•
54- Sinusoidal water waves are generated in		it 20 cm/s and their adjacent crests are 5cm
apart. The time required for each new whole		
A. 100 s B. 4 s	C. 2 s	D. 0.25 s
55-The tension in a string with a linear mass	density of 0.0010 kg/m is 0.4 N. A six	nusoidal wave with a wavelength of 20 cm
on this string has a frequency of:		
A. 0.0125 Hz B. 0.25 Hz	C. 100Hz	D. 630Hz
A transverse traveling sinusoidal wave on	a string has a frequency of 100Hz, a	a wavelength of 0.04m, and amplitude of
2mm.		·
56-The maximum velocity in m/s of any poir		
A. 0.2 B. 1.3	C. 4	D. 15
57-The maximum acceleration in m/s ² of any		
A. 0 B. 130	C. 395	D. 790
58-A wave on a stretched string is reflected:	from a fixed end P of the string. The p	phase difference, at P, between the incident
and reflected waves is:		
	•	the velocity of the wave
A triangular shaped pulse of length l is ref	lected at the fixed end of the string (on which it travels ($\mathbb{Z}_2 = \infty$).
		7 7 - 6
	7 7 7	$Z_1 \mid Z_2 = \omega$
	$Z_1 \mid Z_2 = \emptyset$	$\star \frac{3}{4}I \star$
	· · · · · · · · · · · · · · · · · · ·	
<u> </u>		_
$Z_1 \mid Z_2 = \infty$	Z, = ∞	∨
Į Z ₁ I	2₂ – ∞	
A B	С	D
	5	

59- The shape of the pulse after a length 1/4 of the pulse has been reflected. 60- The shape of the pulse after a length 1/2 of the pulse has been reflected. 61- The shape of the pulse after a length 31/4 of the pulse has been reflected.						
62- The shape of the pulse after a length I of the pulse has been reflected.						
	-			djacent rarefaction center is:		
	B. 1.5m	C. 3m		to know wave speed		
			me source. The speak	ers are 3m apart and at ear level.		
An observer stands at X, 4	m in front of one spe	aker as shown.				
	3m spea	akers				
	↓ 1 20		• X			
			L			
64-If the amplitudes are not	changed; the sound he	e hears will be lea	st intense if the waveler	ngth is:		
A. lm	B. 2m	C. 3		D. 4m		
65- If the amplitudes are no	t changed; the sound b	ie hears will be m	ost intense if the wavele	ength is:		
A. 1m	B. 2m	C . 3	3m	D. 4m		
66- "Beats" in sound refer to	o:					
A. interference of two wave	s of the same frequenc	су				
B. combination of two wave						
C. reversal of phase of refle						
D. two media having slightl	y different sound velo	cities				
67- The largest number of b	eats per second will be	e heard from which	ch pair of tuning forks?			
A. 200 and 201 Hz	_					
B. 256 and 260 Hz						
C. 534 and 540 Hz						
D. 763 and 774 Hz						
68- A stationary source ger	nerates 5Hz water wa	ves whose speed	is 2m/s. A boat is app	roaching the source at 10m/s. The		
frequency of these waves, as observed by a person in the boat, is:						
A. 5Hz	B. 15 Hz		C. 20Hz	D. 30 Hz		
69- If the speed of sound is	340m/s a plane flying	at 400m/s creates	a conical shock wave v	with an apex half angle of:		
A. 0 (no shock wave)	B. 32°	C. 40°	D. 58°	•		
70-A "wave front" is a surfa	ace of constant:					
A. phase	B. frequency		C. wavelength	D. amplitude		
71-Huygens' construction of			_	-		
A. for light	Ĭ					
B. for an electromagnetic w	ave					
C. if one of the media is vacuum (or air)						
D. for all of the above and other situations						
72-In a Young's double-slit experiment the center of a bright fringe occurs wherever waves from the slits differ in the						
distance they travel by a multiple of:						
A. a fourth of a wavelength						
B. a half a wavelength						
C. a wavelength						
D. none of the above						

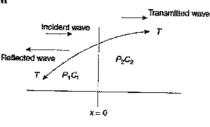
73-In a Young's double-slit experiment, light of wavelength 500 nm illuminates two slits that are separated by 1mm. The

C. 0.5 cm


D. none of the above

separation between adjacent bright fringes on a screen 5m from the slits is:
A. 0.1 cm
B. 0.25 cm
C. 0.5 cm

74-If two light waves are coherent:


- A. their amplitudes are the same
- B. their frequencies are the same
- C. their wavelengths are the same
- D. their phase difference is constant
- 75-Sound differs from light in that sound:
- A. is not subject to diffraction
- B. is a torsional wave rather than a longitudinal wave
- C. does not require energy for its origin
- D. is a longitudinal wave rather than a transverse wave

Simple Lissajous figures produced by perpendicular simple harmonic motions of different angular frequencies ω_x and ω_v and phase difference ϕ

- 76-Which figure corresponding to $\omega_x/\omega_y=2$ and $\varphi=0$.
- 77- Which figure corresponding to $\omega_x/\omega_y = 3$ and $\phi = \pi/2$.
- 78- Methods of Describing the Damping of an Oscillator
- A. The logarithmic decrement
- B. Relaxation Time
- C. The Quality Factor
- D. All of the above
- 79- The magnitude of the displacement, x, and its phase, ϕ , with respect to the driving force, $F_0 \cos \omega t$, after the transient term dies away.
- A. There is no phase difference ϕ exists between x and the force because of the reactive part $(\omega m s/\omega)$ of the mechanical impedance.
- B. That an extra difference is introduced by the factor -i and even if ϕ were zero the displacement x would lag the force F₀ cos ωt by 90°.
- C. That the maximum amplitude of the displacement x is $F_0/\omega Z_m$. We see that this is dimensionally incorrect because the velocity x/t has dimensions $F_0/Z_{\rm m}$.
- E. None of the above
- 80- One of the different types of velocities in wave motion:
- A. The particle velocity
- B. The phase velocity
- C. The group velocity
- D. All of the above
- 81-The following function might be a solution to the wave equation with phase velocity c.
- A. $f(x,t) = (ct x)^2$
- B. $f(x,t) = \sin(ct x)$
- C. Both of the above
- D. None of the above

For the incident and reflected wave shown

92 The dynamical hound	Ame condition in			
82- The dynamical bound	e same immediately to the	loft and might of $x = 0$		
	f the transverse force at x =			
C. Both of the above	Title transverse force at x -	- v.		
D. None of the above				
83- The geometrical boun	dam condition is:			
	e same immediately to the	left and right of $\mathbf{v} = 0$		
	f the transverse force at x =			
C. Both of the above	t the mansverse force at A	0.		
D. None of the above				
	sion between media of imp	nedance Z_1 and Z_2 a third	l medium is added with	
A. $Z_3 = Z_1Z_2$ and its lengt		p	111001111111111111111111111111111111111	•
B. $Z_3 = Z_1 Z_2$ and its length				• •
C. $Z_3 = Z_1 Z_2$ and its length				
D. None of the above				
85- The Categories of Sou	and Waves are:			
A. Audible waves				
B. Infrasonic waves				
C. Ultrasonic waves				
D. All of the above				
86- The Anti-Collision De	etection is one application	of:		
A. Audible waves				
B. Infrasonic waves		•		
C. Ultrasonic waves				
D. All of the above				
87-What speed should a g	alaxy move with respect to	o us so that the sodium li	ine at 589 nm is observed at	589.6 nm?
A. 306 m/s	B. 306 Km/s	C. 306 mile.	/s D. None of the	above
88-To make interference of	of waves from two sources	3:		
A. The sources must be co	oherent			
B. The sources should be	monochromatic			
C. Both of the above		•		
D. None of the above				
89- Two slits are made of	ne millimeter apart and the	he screen is placed one	meter away. What is the fri	nge separation when
blue-green light of wavele				
A. 0.5 nm	B. 0.5 mm	C. 0.5 µm	D. None of the ab-	ove
90- An oscillatory motion	must be simple harmonic	if:		
A. the amplitude is small				
	4 4			

B. the potential energy is equal to the kinetic energy C. the motion is along the arc of a circle D. the acceleration varies sinusoidally with time E. the derivative, dU/dx, of the potential energy is negative

Best Wishes

Dr. Ahmed Saeed

Dr. Demyana Adel

