Kafrelsheikh University
Faculty of Engineering
Electrical Engineering Department
Final Exam 2020-2021

2nd Year (Electrical Engineering) Automatic Control (1)

Time: 180 minutes

Mark: 110

Dr. Abdel-Fattah Heliel

Answer all the following questions:

Problem 1: (* Marks)

Date: 4-3-2021

a) Obtain the transfer functions $X_1(s)/U(s)$ and $X_2(s)/U(s)$ of the mechanical system shown in Fig. ξ . [1 \circ Marks]

b) Use block diagram reduction to simplify the block diagram below into a single block relating Y(s) to R(s), [15 Marks].

Fig. 2

Problem 2: (2 · points)

- a) What are the advantages and disadvantages of open-loop and closed-loop control systems? [10 Marks]
- b) Obtain analytically the rise time, peak time, maximum overshoot, and settling time in the unit-step response of a closed-loop system given by: $\frac{C(s)}{R(s)} = \frac{36}{s^2 + 2s + 36}$, and show locations of poles and zeros on the pole-zero plot. [10 Marks].

Problem 3: (20 Marks)

a) A system with several feedback loops and forward paths is shown. Find the transfer function of the system using Mason rule. [12 Marks]

Fig. 3

- b) Consider the following electrical system with the applied voltage V_i as the input and V_o as the output.
 - 1. Write the loop equations. (2 Marks)
 - 2. Write the node equations. (2 Marks)
 - 3. Find the transfer function of the system. (2 Marks)
 - 4. What is the order of this system? Notice that $V_l = V_o$ (2 Marks)

Fig. 4

Problem 4: (20 Marks)

a) Consider the following characteristic equation. Determine the range of K for stability.

$$s^4 + Ks^3 + s^2 + s + 1 = 0$$
[10 Marks].

b) Consider a unity feedback system with the open-loop transfer function as: $G(s) = \frac{K}{s(s+3)(s^2+2s+2)}$, Sketch RL of the closed-loop system when K varies from 0 to ∞ .

[10 Marks].

مع تمنياتي لكم بالتوفيق والنجاح،،،