Kafrelsheikh University
Faculty of Engineering
Department: Electrical Power & Machines
Year: 2nd electrical [New (R-2007)]

Subject: Electromagnetic Fields Examiner: Dr. Ragab El-Schiemy Dr. Bedir Yousif

Final Exam
First Semester 2016/2017
Time allowed: 3 Hours
Date: 10/01/2017
Full Marks: 90
Pages: Two pages

Pages: Two pages Academic Number: EPM2103

Solve the following questions

Part 1: (60 Marks)

- 1. Transforming the vector field $G=(xz/y)a_x$ into spherical coordinates .
- 2. Drive an expression for the electric field strength $\mathbf{E}(\mathbf{x},\mathbf{y},\mathbf{z})$ of an infinite line charge extended from point B $(0,0,\infty)$ to A $(0,0,-\infty)$, with uniform charge density ρ_l .
- 3. Planes x = 2 and y = -3, respectively, carry charges 10 nC/m^2 and 15 nC/m^2 . If the line x = 0, z = 2 carries charge 10π nC/m, calculate E at (1, 1, -1) due to the three charge distributions.
- 4. Given that $D = z\rho\cos^2\phi \ a_z \ C/m^2$, calculate the charge density at $(1, \frac{\pi}{4}, 3)$ and the total charge enclosed by the cylinder of radius $1 \ m$ with $-2 \le z \le 2 \ m$.
- 5. Sketch the stream field lines of the uniform line charge with $\rho_L = 2\pi\varepsilon_0$.
- 6. Given the potential field, $V = 2x^2y 5z$, and a point P(-4, 3, 6), we wish to find several numerical values at point P: the potential V, the electric field intensity E, the direction of E, the electric flux density D, and the volume charge density ρ_v .
- 7. Drive and sketch the streamlines of an electric dipole located along the z-axis?
- 8. Given the current density $J = -10^4 [\sin(2x)e^{-2y}a_x + \cos(2x)e^{-2y}a_y] kA/m^2$:
 - (i) Find the total current crossing the plane y=1 in the a_y direction in the region 0 < x < 1,
 - (ii) Find the total current leaving the region $0 \le x$, $x \le 1$, $2 \le z \le 3$ by $\int \mathbf{J} \cdot d\mathbf{S}$ over the surface of the cube

<><<See Page 2 for Second Part >>>>>>>>

Kafrelsheikh University Faculty of Engineering

Department: Electrical Power & Machines. Year: 2nd electrical [New (R-2007)]

Subject: Electromagnetic Fields
Examiner: Dr. Ragab El-Schiemy
Dr. Bedir Yousif

Final Exam
First Semester 2016/2017
Time allowed: 3 Hours
Date: 10 /01/2017
Full Marks: 90

Pages: Two pages Academic Number: EPM2103

Part 2 (30 Marks)

- A. Check the errors for the following:
- 1. Gauss's law states that the circulation of electric flux density around a closed path is equal to the charge enclosed by the path
- 2. A magnetic flux line is a path or line drawn in such a way that its direction at any point is the direction of the magnetic field at that point.
- 3. There are two types of flux density configurations the source and the sink.
- 4. A perfect conductor contains an electrostatic field within it.
- 5. The magnetic field B is defined as the force per unit current element.
- 6. An isolated magnetic charge does not exist.
- 7. The dielectric strength is the maximum electric field that a dielectric can tolerate or withstand without breakdown.
- 8. Electric flux density at (4, 0, 3) equals $240a_x + 42a_z \mu C/m^2$ if there is a point charge $-5\pi \mu C$ at (4, 0, 0) and a line charge $3\pi \mu C/m$ along the y-axis.
- B. Discuss in brief the general classifications of electric and magnetic materials.
- C. State passion's equation, Ampere's law, Stokes theorem.
- D. Determine the equivalent capacitance and the equivalent relative permittivity of each of the capacitors in Figures 1 and 2. Taking, d = 5 mm and S = 30 cm². What is happen if the width w is doubled on the equivalent capacitances obtained?

