

Date: 11 Jan. 2018 Time allowed: 3 hrs.

Full mark: 60

Final Exam: 2 Pages

Pipelines and Networks (MEP4120)

Remarks: (Answer ALL the following questions... Assume any missing data... Answers should be supported with sketches... The weight of each problem is indicated.

Ouestion (1) (9 Marks)

a) For a pipe of radius R, the entire region $0 \le r \le R$ of turbulent flow is considered to be made up of four regions. Explain briefly these regions. (3 Marks)

b) Consider flow of an incompressible fully developed turbulent fluid flow through a long horizontal circular pipe. Due to frictional forces between the fluid and the pipe wall, there exists a shear stress τ_w on the inside pipe wall. Using **dimensional analysis**, develop a non-dimensional relationship between shear stress τ_w and the operational (fluid velocity, density and viscosity) and design (pipe surface roughness and inner diameter) parameters of the pipe flow. (6 Marks)

Question (2) (12 Marks)

Reservoirs A, B, and C (Fig. Q2) have constant water levels of 0 m, 48 m, and 50 m respectively above datum and are connected by pipes to a single junction J. Calculate the following:

- i. The equivalent hydraulic resistance of pipes 1, 2, and 3. (2 Marks)
- ii. The pressure head at junction J (Hint: Use $H_J = 45$ m as an initial guess). (7 Marks)
- iii. The discharge in each pipe. (3 Marks)

				'i X'	Ctel 50 m	
Pipe	r					- cl 48 m
No.	K (s²/m²)	"			(5)	B
1	355	1.927		(3)		
2	816	1.927	•	and the same of th	>	(4)
3	816	1.927	a cl 0 m		and the same of th	
4	222	1.974			· · · · · · · · · · · · · · · · · · ·	Tria O2
5	355	1.971	CIV.		35	Fig. Q2
L	•		X73.		<u>2)</u>	

Question (3)
A single looped network (Fig. Q3) consists of 4 pipes and 4 nodes. Neglecting minor losses, Do the following tasks:

- Write the system of Q-equations for the network. (2 Marks)
- ii. Write the matrices for the Newton's method implementation for this system. (Using subscripts on K, n and Q corresponding to the pipe number, do all necessary work to setup the first iteration of the Newton Method solution for flow rates in this network). (8 Marks)

P.T.0 ⋙

A water distribution network for a town zone is shown in Figure Q4. All network elements are at the same elevation. **Do the following**:

- i. Write the system of ΔQ -equations for the network. (4 Marks)
- ii. Calculate discharge in each pipe using Hardy-Cross methods for just two iterations (Hint: use the initial guess for discharge tabulated below). (12 Marks)

Question (5)

The shown network (Fig. Q5) consists of 4 pipes and 3 nodes. A reservoir and a boosting pump supply the network with water through pipe (1). Neglecting local losses do the following tasks:

- Write the system of **Q-equations** for the network. (2 Marks)
- ii. Calculate the discharge in pipe (1) and the head of the pump (hp). (2 Marks)
- iii. Determine the discharge Q_i (m³/s) in each pipe using Linear Theory Method for just two iterations (For initial guess use: Q2=0.12 m³/s, Q3=0.03 m³/s, Q4=0.03 m³/s). (9 Marks)

End of Questions

With my Best Wishes...

Dr. M. Osama El-Samadony