Kafrelsheikh University Faculty of Engineering Dept. of Mechanical Eng.

Pipelines and Networks (MEP4120)

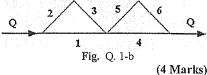
Date: 14 Jan. 2017 Time allowed: 3 hrs. Full mark: 60

Final Exam: 3 Pages

4th Year, Mech. Power Eng.

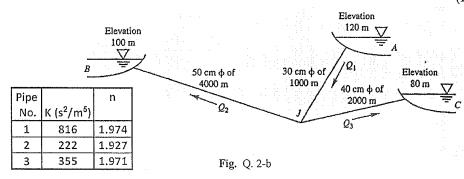
Name:

Academic Number:


Remarks: (Answer ALL the following questions... Assume any missing data... Answers should be supported with sketches... The weight of each problem is indicated, there are 5 Marks bonus

1- a) Show that f = 64/Re for laminar flow in a circular pipe.

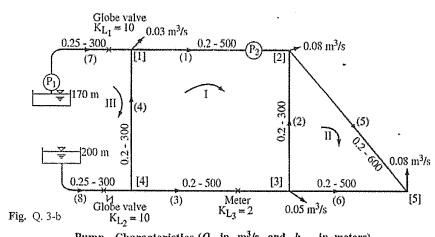
(4 Marks)


b) The figure (Fig Q1-b) shows a network of pipes transporting water at a flow rate Q from the inlet node to the outlet node. The individual pipes in the network are numbered as shown and the friction head loss in the pipes is given by for $h_{fi} = k_i Q_i^2$, i=1,2,3,...,6

Derive an expression for the head loss k_{eq} factor of an equivalent single pipe connected between the same inlet and outlet nodes and transporting the same total flow Q.

- 2- a) What are the different methods of analyzing a given distribution system? What are the advantages of Hardy-Cross method of pipe network analysis?
 - b) Reservoirs A, B and C (Fig. Q2-b) have constant water levels of 120, 100, and, 80 m respectively above datum and are connected by pipes to a single junction J. Work the following:
 - i. Calculate the flow in each pipe and the pressure head at junction J.
 - ii. Draw the TEL for all network branches.

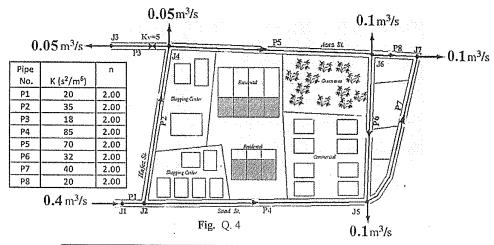
(10 Marks)


- 3- In the following figure (Fig. Q3-b), the network consists of 8 pipes and 5 nodes. A source pump and a boosting are mounted. Some local losses exist as shown in figure. Do the following tasks:
 - i Write the system of Q-equations.
- ii Write the system of H-equations.

(Use subscripts on K, n and Q corresponding to the pipe number, and substitute the total dynamic head produced by both pumps hp₁ and hp₂ in terms of Q.)

iii- If the discharge in pipe 5 is $Q_7 = 0.055 \text{ m}^3/\text{sec}$, from the reservoir. What is the elevation of the HGL at node [1]? (10 Marks)

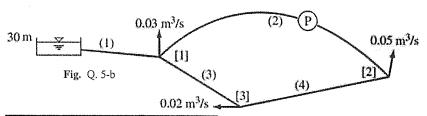
P.T.O



Pump Characteristics (Q			in m ³ /	s and I	i _p in m	ieters)
Pump No.	Point 1		Point 2		Point 3	
	Q	h_p	Q	h_p	Q	h_p
I	0.025	12.0	0.040	10,5	0.055	8.0
2	0.060	4.0	0.090	3.8	0.120	3.5

4- A water distribution network for a town zone is shown in Figure Q. 4. All network elements are at the same elevation. Analyze the network for pipe discharges using Hardy-Cross methods for just two iterations. If the piezometric head at junction J1 is 30 m, determine the piezometric head at junction J6 (neglecting velocity heads).

Hint: use the initial guess for discharge tabulated below.


(15 Marks)

Initial Guess for discharge in pipes								
Pipe	P1	P2	P3	P4	P5	Рб	P7	P8
Flow rate, Q (m³/s)	0.4	0.3	0.05	0.1	0.2	0.05	0.05	0.05

- 5- a) Define the NPSH and Specific speed (Ns) for pumps, and discuss its importance in pump selection. (4 Marks)
 - b) The shown network (Fig. Q. 4-b) consists of 4 pipes and 3 nodes. A source pump and one reservoir supply the network. The pump characteristics and pipes data are tabulated below. Neglecting local losses, determine the following:
 - i. Determine the discharge Q_i (m³/s) in each pipe using Linear Theory Method for just two iterations (Use the initial guess given below).
 - ii. The total head at nodes [3].
 - iii. The head of the pump.

(12 Marks)

Pipe	Dia.	Length	K	n
	m	ın		
1	0.30	1000	543	1.886
2	0.20	2500	13700	1.946
3	0.20	1000	3270	1.839
4	0.30	1500	1077	1.965

Hp =	36 - 551	$\cdot Q^2$

Intial Guess: Q1= $0.1 \text{ m}^3/\text{s}$ Q2 = 0.04 m/s, Q3 = $0.03 \text{ m}^3/\text{s}$ Q4= $0.01 \text{ m}^3/\text{s}$

(8 Marks)

End of Questions

=== (With my best wishes) ===

Dr. M. Osama El-samadony