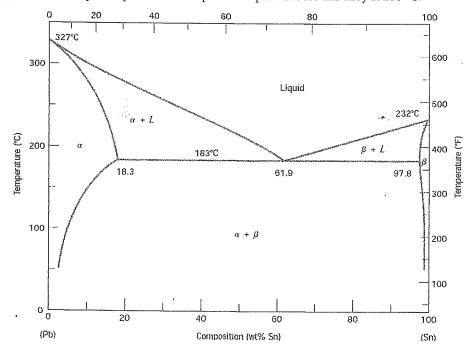
Kafrelsheikh University
Faculty of Engineering
Mechanical Engineering Department
Subject: Metallurgy (MDP1104) Year:

Date: 12 January 2017 Time allowed: 3 Hours Full Marks: 75 Marks Final Exam: 2 pages

Subject.	Weulurgy (MDF1104) 1e	ar: 1 Mecn.	Kategoria (Barreray)	Final Exam: 2 pages		
Question 1: (10 Marks)						
(a) Fill in the spaces the correct answer: (5 Marks)						
1.	investigates the relationships that exist between the structure and					
	properties of materials.					
	How many atoms are there in a mole of a substance? Answer:					
3.	is one such type of defect involves a cation-vacancy and a cation-interstitial pair.					
4.	Diffusion occurs in pure metals, where all atoms exchanging positions are of the same type; this is termed					
5.	A may be defined as a homogeneous portion of a system that has					
	uniform physical and chemical characteristics.					
(b) Ch	oose the right answer :	(5 Marks)				
1.	What type(s) of electron s	ubshell(s) does a	M shell contain?	n		
	□ A. s	□ В. р	□ C.	d □D.f		
	☐ E. s and p	\square F. s, p and d	□ G.	All of the above		
2.	2. What is the predominant type of bonding for ceramic materials?					
	☐ A. Ionic	☐ B. Co	valent	☐ C. Metallic		
	☐ D. Secondary	□ E. Bo	th A and B	☐ F. Both A and C		
3.	The drawing below represents the unit cell for which crystal structure? □ A. Simple cubic □ B. Face-centered cubic □ C. Body-centered cubic □ D. Hexagonal close-packed					
4.	of controls, it and b, have restrict grain size numbers of 5 and 6, respectively.					
	Which specimen has the larger grain size?					
	\square Grain size of A > Grain size of B \square Grain size of A < Grain size of B					
5. As temperature decreases, the fraction of the total number of atoms that are capable of						
	diffusive motion					
	☐ Increases	☐ Decre	ases	☐ Remains constant		
Question	<u>2:</u> (25 Marks)					
(a) Would you expect Al ₂ O ₃ or aluminum to have the higher coefficient of thermal expansion?						
Exp	olain. (5 Marks)					
(b) Compare between the SCC, BCC, FCC and HCP unit cells? (6 Marks)						
(c) A metal having a cubic structure has a density of 2.6 g/cm ³ , an atomic weight of 87.62 g/mol, and a						
lattice parameter of 6.0849 Å. One atom is associated with each lattice point. Examine whether the						
metal has a BCC or FCC crystal structure. (Avogadro's number = 6.02*10 ²³ atoms/mol). (6 Marks)						
(d) Sketch the following planes and directions within a cubic unit cell. (8 Marks)						
	2011		(201)			

Question 3: (25 Marks)


(a) Discuss briefly the different types of point defects?

(5 Marks)

- (b) Calculate the energy for vacancy formation in silver, given that the equilibrium number of vacancies at 1073 °K is $3.6*10^{23}$ atom/m³. The atomic weight and density at 1073 °K for silver are, respectively, 107.9 g/mol and 9.5 g/cm³. (Note: $k = 8.62*10^{-5}$ eV/atom-°K) (6 Marks)
- (c) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion, then illustrate your answer with schematic diagrams for both diffusion mechanisms? (4 Marks)
- (d) The diffusion coefficients for carbon in γ -iron are $5.9*10^{-12}$ m²/s and $5.3*10^{-11}$ m²/s given at 900 °C and 1100 °C respectively. Determine the values of D_{θ} and the activation energy Q_d , then determine the approximate time at 1000 °C that will produce the same diffusion result (in terms of concentration of C at some specific point in γ -iron) as a 10 hours heat treatment at 900 °C. (Note: the gas constant R = 8.31 J/mol. °K) (10 Marks)

Ouestion 4: (15 Marks)

- (a) Phase diagram gives answer to three important questions, what are these questions? (3 Marks)
- (b) Use the given lead tin (Sn-Pb) phase diagram shown in figure to answer the following for an alloy contain 70 wt% Pb 30 wt% Sn: (12 Marks)
 - (i) The liquidus temperature, solidus temperature, freezing range and cooling curve
 - (ii) What are the phases present and the phase compositions for this alloy at 200 °C.

