Physics & Engineering Mathematics Dept.

Year: Second Year-Electric.

Korretenalikh Urrivaraliy

Subject: Engineering Mathematics (3)

Date: 3/1/2019

Time allowed: 3 hours

Full mark: 90

Final Term Exam: 2pages

The following questions measure ILOs a1, b1, b7, c1 and c7.

Answer the following questions:

Question 1: (25 marks)

- a) Prove that if f(z) = u(x, y) + iv(x, y) is analytic function, then both u(x, y) and v(x, y) are harmonic functions. (b1,c1)(5 marks)
- b) Discuss the analyticity of the following functions and which of them is entire:

i.
$$f(z) = \sin x \cosh y + i \cos x \sinh y$$
.

(a1,b1)(5 marks)

ii.
$$f(z) = \frac{x - iy}{x^2 + y^2}.$$

(a1,b1)(5 marks)

iii.
$$f(z) = z\overline{z}$$
.

(a1,b1)(5 marks)

c) Is the function $u(x,y) = xe^x \cos y - ye^x \sin y$ harmonic? If so, find its conjugate harmonic function v(x,y) and find the analytic function f(z) = u(x,y) + iv(x,y) and f'(z). (a1,b1,c1)(5 marks)

Question 2: (20 marks)

- a) Prove that an analytic function is independent on \overline{z} , i.e. for f(z) = u(x, y) + iv(x, y), we have $\frac{\partial f}{\partial \overline{z}} = 0$. (b1,c1)(5 marks)
- b) Find the value of $\sin^{-1} i$.

(a1,b1,c1)(5 marks)

c) Find $\frac{d}{dz}f(z)$ when exist and find the points at which f'(z) exist for:

i.
$$f(z) = \ln z$$
.

(a1,b1,e1)(5 marks)

ii.
$$f(z) = \coth^{-1} z$$
.

(a1,b1,c1)(5 marks)

Samal

Physics & Engineering Mathematics Dept.

Date: 3/1/2019

Time allowed: 3 hours

Full mark: 90

Final Term Exam: 2pages

Year: Second Year-Electric.

Subject: Engineering Mathematics (3)

The following questions measure ILOs a1, b1, b7, c1 and c7.

Question 3:: (20marks)

a) State Cauchy integral theorem, then evaluate the following integrals around the contour C:|z|=3:

i.
$$\oint \frac{\tan z}{z-1} dz$$

(a1,b1,b7)(5 marks)

ii.
$$\oint \frac{e^{-z}}{z^2 + 4} dz$$

(a1,b1,b7)(5 marks)

b) Find the series expansion for the functions about the indicated singularity:

i.
$$f(z) = \ln(\frac{1+z}{1-z})$$

about z = 0.

(b7,c1)(5 marks)

ii.
$$f(z) = (z-3)\cos(\frac{1}{z+2})$$
,

about z = -2. (b7,c1) (5 marks)

Question 4: (25 marks)

- Prove that the image of a circle or a line under the mapping $\omega(z) = 1/z$, may be a circle or a line. (c1,c7)(5 marks)
- b) Using the residue theorem evaluate the integrals:

(a1,b7,c1)(15 marks)

i.
$$\int_{0}^{2\pi} \frac{d\theta}{5 + \sin \theta}.$$

ii. ii.
$$\int_{0}^{\infty} \frac{1}{(x^4+4)^2} dx$$

c) Find the image of the quarter of the unit circle |z|=1 in the first quarter by the mapping:

$$\omega = (2+2i)z + (4+i)$$
.

(c1,c7)((5 marks))

With our best wishes Dr Samah El-Kholy