Kafrelsheikh University
Faculty of Engineering
Electrical Engineering Department
Final Exam, 2018 -2019
Subject :Artificial Intelligence



4thYear:(Computer Engineering &

systems)

Academic Number: ECS4125

Date: 17 / 1 / 2019 Time: 3 Hours. Mark: 90, 2 pages

This exam measures ILOs no: a1, a4, a5, a12, a13, a16, a17, b1, b2, b3, b7, b12, b17, c1, c2, c7, c14, c15, d1, d2, d3, d4

| Question : | #1: | True | or | False | [10] | Marks |
|------------|-----|------|----|-------|------|-------|
|            |     |      | _  |       |      |       |

- a) "Connect four" game is considered as fully observable and discrete in AI terminology. ( )
- b) "Backgammon" game is considered as partially observable and stochastic in AI terminology. ( )
- c) If variable B depends on variable A then  $P(\neg A/B) = 1 P(A/B)$
- d) A\* algorithm is based on Depth First –Search.
- e) Robot car is considered as stochastic and discrete in AI terminology

## Question #2: Choose the correct answer [10 Marks]

- 1- The Task Environment of an agent consists of .......
  - a) Sensors

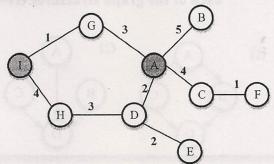
- b) Actuators
- c) Performance Measures

d) All of the mentioned

- 2- What is state space?
  - a) The whole problem
    - b) Representing your problem with variable and parameter
  - c) Your Definition to a problem
- d) Problem you design
- 3- A problem in a search space is defined by one of these state.
  - a) Initial state

- b) Last state
- c) Intermediate state
- d) All of the above
- 4- The major component/components for measuring the performance of problem solving
  - a) Completeness

- b) Optimality
- c) Time and Space complexity
- d) All of the mentioned
- 5- Which is the best way to go for Game playing problem?
  - a) Linear approach


b) Random approach

c) Heuristic approach

d) Optimal approach

## Question #3: Answer the following questions [25 Marks]

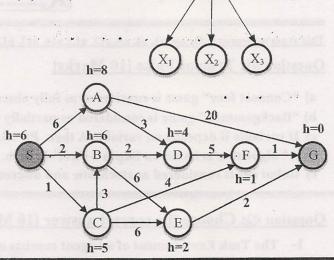
1. Assume the initial state (root) is A and the goal state is I. show how each of the search strategies would create a search tree to find a path from the initial state to the goal state using Uniform cost search.



2. Bowl B<sub>1</sub> contains two red and four white chips, bowl B<sub>2</sub> contains one red and two white chips, and

bowl  $B_3$  contains five red and four white chips. The probabilities for selecting the bowls are given by  $P(B_1) = \frac{1}{3}$ ,  $P(B_2) = \frac{1}{6}$ ,  $P(B_3) = \frac{1}{2}$ . Consider the experiment of selecting a bowl with these probabilities and then drawing a chip at random from that bowl.

(a) What is the probability of drawing a white chip?


(b) Suppose that the outcome of the experiment is a white chip. What is the conditional probability that the chip was drawn from bowl  $B_2$ ? Also calculate  $P(B_1/W)$  and  $P(B_3/W)$ .

Question #4: Answer by explanations [30 Marks]

1. Consider the following network, where the P(A) = 0.5,

$$\forall i \ P(X_i/A) = 0.2, P(X_i/\neg A) = 0.6$$

- a) Calculate  $P(A/X_1, X_2, \neg X_3)$
- b) Calculate  $P(X_3/X_1)$
- 2. Consider the search problem below with start state S and goal state G. The transition costs are next to the edges, and the heuristic values are next to the states.
- (a) What is the final path for this DFS search?
- (b) What is the final path for this A\* search?



## Question #5: Answer by explanations [15 Marks]

1. How can you design a simple neural network with two inputs perceptron that acts as an AND gate, using step operator with learning rate 0.1 and bias input is -0.2, the initial random weights are  $W_1$ =0.3 and  $W_2$ =-0.1.

2. Following is a list of conditional independence statements. For each statement.

(1) Name all of the graph structures, G1—G4, or "none" that imply it.

- a. A is conditionally independent of B given C.
- b. A is conditionally independent of B given D.
- c. B is conditionally independent of D given A.
- d. B is conditionally independent of D given C.
- e. B is independent of C.
- f. B is conditionally independent of C given A.

(2) How many independent parameters are required to specify a Bayesian network given each of the graph structures G1—G4?



With Best Wishes

Dr. Wessam Fikry, Committee of Correctors and Testers