Kaferelsheikh University

Department of Electrical Engineering

Subject: Electronic Devices

Academic Number: ECE3107

Full Mark: 100 degree

Faculty of Engineering

Year: 3rd Electronics and

Electrical Communications

Final Exam: 2 pages

Time allowed: 3 h

This exam measures ILOs no: a5, a13,b5,a8,b6, b8,c5, d1,d7

Question #1: (20 Mark)

1-Simple large Signal MOSFET model has basic regions of operation. Explain them?

2-Explain the carrier's concentration at extremely high temperature and low temperature? Determine applications depend in that behavior?

Date: 30 /12/2018

3- An N-type silicon sample has a uniform density $N_d = 10^{17} \text{cm}^{-3}$ of arsenic, and a P-type sample has $N_a = 10^{15} \text{cm}^{-3}$. A third sample has both impurities present at the same time.

a- Find the equilibrium minority carrier concentrations at 300 K in each sample.

b- Find the conductivity of each sample at 300 K.

c- Find the Fermi level in each material at 300 K with respect to either the conduction band edge (E_c) or the valence band edge (E_v) .

Question #2: (20 Mark)

- 1- Enhancement NMOS transistor, as the value of v_{ds} increase it causes the effective L (channel length) to decrease which causes the current to increase. Drive an expression for channel modulation effect.
- 2- Explain the ohmic contact and drive an expression for the specified contact resistance Rc.
- 3- Suppose you have samples of Si, Ge, and Ge, and GaAs at T = 300 K, all with the same doping level of $Nd^+ Na^- = 3 \times 10^{15}$ /cm³. Assuming all dopants are ionized, for which material is p most sensitive to temperature (the sensitivity of p is defining by $\delta p/\delta T$)? What is your conclusion regarding the relation between Eg and temperature sensitivity of minority carrier concentration?

Question#3: (20 Mark)

- 1. Which are the most important breakdown mechanisms in a reverse-biased p-n junction? Describe succinctly (no more than one paragraph for each process) how they work and how they trigger the breakdown process.
- 2. A Si p-n junction has dopant concentrations $N_D = 2 * 10^{15}$ cm⁻³ and $N_A = 2 * 10^{16}$ cm⁻³. A p-n junction is reverse-biased with $V_a = -10V$. Determine the percent change in

Best Wishes

الاسئلة في صفحتين

Dr. noha abd al salam, Committee of Correctors and Testers

junction (depletion) capacitance and built-in potential if the doping in the p region is increased by a factor of 2.

3. Derive the following expression:

$$p = \frac{1}{4} \left(\frac{2 m_h KT}{\pi h^2} \right)^{3/2} e^{(E_v - E_F)/KT} = N_v e^{(E_v - E_{cF})/KT}$$

Question #4: (20 Mark)

- 1- Compare between the following:
- Minority carrier injection
- Minority carrier extraction
- 2- Sketch the band diagram of MOS capacitor. show the effect of applied voltage "flat band voltage"
- 3- Determine the metal-semiconductor work function difference ΦMS (in eV) in an MOS structure with p-type Si for the case where the gate is Al (qxM=3,2 eV), n^+ poly silicon (poly crystalline Si, assume it is identical to normal Si), and p^+ poly silicon. Assume $NA=6*10^{15}$ cm⁻³ and T=300 K.

Question #5: (20 Mark)

- 1- Power diode device can be used in high frequency or no, why? If no, illustrate that device. Then sketch Reverse -recovery characteristics for power diode then define softness factor.
- 2- Sketch the band diagram of schottky contact. Clear an expression of the total current in it "With comments".
- 3- Calculate the maximum width of the depletion layer w_{max} (at the onset of inversion) and the maximum depletion charge |Qd, max| in p-type Si, GaAs, and Ge semiconductors of an MOS structure with $NA = 10^{16}$ cm⁻³ and at T = 300 K, for si, $n_i = 1.5 *10^{-10}$ cm⁻³, $\varepsilon_r = 11.7$. For Ge, $n_i = 2.5 *10^{-12}$ cm⁻³, $\varepsilon_r = 16$ and for GaAs $n_i = 2.5 *10^{-12}$ cm⁻³, $\varepsilon_r = 13.2$.

Best Wishes

الاسئلة في صفحتين

Dr. noha abd al salam, Committee of Correctors and Testers