KAPR-ELSHIEKH UNIVERSITY FACULTY OF ENGINEERING TIME ALLOWED: 3 HOURS ELECTRICAL ENGINEERING DEPAREMENT COMPUTER ENGINEERING AND SYSTEMS BRANCH 1ST YEAR FINAL ENAM OF 1ST SEMESTER 2017-2018 LOCIC CIRCUITS ICODE NO. ECS 1804 The maximum mark for the examination paper is 60 marks, and the mark obtainable for each part of a question is shown in brackets alongside the question. Instructions to the candidates: - Clarify your answer with the suitable sketches as you can. - Please use a pen or heavy pencil to ensure legibility. - Please attempt all questions. ## QUESTION NUMBER ONE [25 Marks] Give the possible rang of values of the signed integer N, such that when 8-bit binary number N is adding to signed integer 53H, we have no overflow. Likewise, give the possible values of the 8-bit binary number N that when you add to the positive number 48H the sign bit of the result is 1 and overflow bit is equal 0. [6 Marks] Using the least number of 4-bit binary adders and gates, design a BCD adder/subtractor. The adder/subtractor should receive two 4-bit numbers and should produce 4-bit sum/difference and a carry/borrow output. [6 Marks] 3. The circuit in Fig. 1 is used to implement the function Z, i and j can be selected from the set $\{0, 1, 8, \overline{8}\}$. What values should be chosen for i and j? [3 Marks] $$Z = f(A, B) = A + B$$ 4. Fig. 2 shows a logic circuit with four full-adders. Two 4-bit integers $Y = Y_3 Y_2 Y_1 Y_0$ and X = X3 X2 X1 X0 are added with each other in this circuit. Assume that Y = 0111 what is the value at X when Z = 1? What is then the value of C4? [3 Marks] 5. Given X (dividend) — Off1 and M (divisor) — Off1, show the contents of A and Q registers during the process of division. After that, provide a circuit diagram showing how to implement XOR gate using NAND gate. [7 Marks] ## QUESTION NUMBER TWO [35 MARKS] One older device has a 7-segment display with 7-light bulbs, but it lacks an outlet for connection to a computer. One could therefore need a combinatorial circuit that connects to the bulbs and then converts 7-segment code to the usual BCD code that is used by a variety of other equipments. Design BCD to 7-segment decoder, using a minimum number of gates. The six invalid combinations should result in a blank display. [8 Marks] 2. What are the advantages of minimizing logic circuits? After that, draw the minimum NAND implementation for F(A,B,C,D). $$F(A,B,C,D) = \sum m(1,5,8,13,14,15) + D(3,10,12)$$ Next, by using Boolean algebra prove that: $A + \overline{A}B + A\overline{B} = A + B$. [7 Marks] 3. There is an error in Fig. 3 that is used to implement of the carry out logic. Identify the error and propose a simple solution. Afterwards, complete the truth table realized by the given multiplexer circuit shown in Fig. 4. Next, derive the K-map for this logic function. Realize the function minimized with the use of PLA. [8 Marks] 4. Suppose that we want to construct 4K x 8 bit RAM by using 1 K x 8 bit RAM chips illustrated in Fig. 5. Draw the block diagram that illustrates the interconnection of the necessary number of chips to form a 4 K x 8 bit RAM. [6 Marks] 5. Write the VHDL code for the circuit describes a 4-to-1 multiplexer. [6 Marks]