اُدک نترم_اثائی و وی

Date: 27/5/2017

Time allowed: 3hours

Full Degree: 100 Final Exam: 2 pages

Physics & Engineering Mathematics Dept. Year: First (Civil)

Kafrelsheikh University

Faculty of Engineering

Subject: Engineering Mathematics (2)

Answer as much as you can:

Question 3: (25 Marks)

(a) Fit the curve $y = \frac{1}{a+b\cos\theta}$ to the following data, and find the root mean square error.

i	1	2	3
θ_{i}	30	45	60
yi	0.225	0.27	0.32

- (b) Calculate $\sqrt{120}$ by using Lagrange interpolation.
- (c) By using Bisection method, find the root of $3x e^{-x} = 0$ in the interval [0.25,0.27], (correct to 3 decimal places)

Question 4: (25 Marks)

- (a) Use Euler's method to approximate the solution for the initial value problem $y' = x^2 + y$, $0 \le x \le 0.1$, y(0) = 1 with h = 0.02.
- (b) Find Eigen value and Eigen vectors, then solve the given initial value problem $X' = \begin{bmatrix} 1 & 9 \\ 1 & 1 \end{bmatrix} X, \quad X(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
- (c) Evaluate:

$$(i) \int_{-\infty}^{\infty} (e^{5x} - e^x) dx$$
$$(ii) \int_{-\infty}^{\frac{\pi}{2}} \sqrt{\cot \theta} \ d\theta$$

$$(ii)\int\limits_0^{\frac{\pi}{2}}\sqrt{\cot\theta}\;d\theta$$

········· Good luck: Dr. Eng./ Manal El-Sayed ···

Kafrelsheikh University **Faculty of Engineering**

Physics & Engineering Mathematics Dept.

Year: First (Civil)

Subject: Engineering Mathematics (2)

Date: 27/5/2017 Time allowed: 3hours Full Degree: 100 Final Exam: 2 pages

Answer as much as you can:

Question 1: (25 Marks)

a) Deduce Parseval's identity for Fourier series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{2n\pi x}{T} + b_n \sin \frac{2n\pi x}{T})$$

of the periodic function f(x) with period T.

b) Prove that Fourier series of x^2 on the interval $[-\pi, \pi]$ is given by:

$$x^{2} = \frac{\pi^{2}}{3} - 4(\cos x - \frac{1}{2^{2}}\cos 2x + \frac{1}{3^{2}}\cos 3x - \frac{1}{4^{2}}\cos 4x + \dots)$$

and then find the sum of the following series:

i)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

i)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 ii) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ iii) $\sum_{n=1}^{\infty} \frac{1}{n^4}$

iii)
$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$

Question 2: (25 Marks)

- a) Reduce the PDE $u_{tt} = c^2 u_{xx}$ to its canonical form and find its general solution using the canonical transformation $\eta = x + ct$, $\theta = x - ct$.
- b) Using the result obtained in part (a), deduce D'Alembert solution of the following wave equation:

$$u_{tt} = c^2 u_{xx}$$
 , $-\infty < x < \infty$

with initial deflection f(x) and initial velocity g(x) and then solve the PDE:

$$4u_{tt} = u_{xx}$$
 , $-\infty < x < \infty$

with initial deflection $f(x) = \cos x$ and initial velocity $g(x) = \cos 3x$.

c) Solve the one dimensional heat equation:

$$u_t = u_{xx}$$

in a rod of length $\ell = \pi$ when the ends are at zero temperature ($u(0,t) = u(\pi,t) = 0$) and the initial temperature is given by:

$$f(x) = \begin{cases} x & 0 < x < \pi/2 \\ 0 & \pi/2 < x < \pi \end{cases}$$