Kafr El-Sheikh University Faculty of Engineering

Civil Engineering Department

Third Year Civil, 1st term

Full mark: 85

Reinforced Concrete

Final Exam

Date: Dec, 31th, 2017

Time: 4.00 Hours

Question No. 3 (20%):-

The given slab is supposed to be designed as a hollow block slab. If you know that $F.C = 1.50 \text{ kN/m}^2$, $L.L = 3.00 \text{kN/m}^2$:-

1-Make a full design of hollow block slab.

2- With a suitable scale. Draw reinforcement details (Plan & Cross section I-I).

Question No. 4 (20%):-

The given stair is supposed to be designed to resist $L.L = 3.0 \text{ kN/m}^2$, $F.C = 1.50 \text{ kN/m}^2$ it is required to execute the following:-

- 1- Provide the best statical system.
- 2- Make a full design for the given stairs.
- 3- With a suitable scale, draw RFT for only cross section of strip I-I.

Question No. 5 (15%):-

a-Without calculations provide the main steps of shear-torsion design according to ECP

b-Suggest the best statical system for the followings (WITH RFT SKETCH IN YOUR ANSWER PAPER).

مع خالص دعواتي القلبية بالاستفادة الكاملة بالمنهج المعطي د.م/ أحمد عبدالله أحمد حموده واللجنه

El-Sheikh University aculty of Engineering Civil Engineering Department Third Year Civil, 1st term

Full mark: 85

Reinforced Concrete 2

Final Exam

Date: Dec, 31th, 2017

Time: 4.00 Hours

Answer all the following question.

It is allowed to use Egyptian code-design aids.

يسمح باستخدام جداول و مساعدات التصميم

Any missing date may be reasonably assumed.

• Grade of used steel is 360/520 & 240/350 for steel and stirrups. The used f_{cu} is 35 N/mm²

This course satisfy ILOS of A4, A5 and A6-B4, B5 and B11-C3, C4, C6 and C7-D1, D2, D6 and D7

Question No. 1 (25%):-

The given hall with area of (24*9) m^2 shown below is supposed to be designed as continuous paneled beam. By knowing that: $L.L = 3.0 \text{ kN/m}^2$, $F.C = 2.5 \text{ kN/m}^2$, weight of wall $\gamma_{wall} = 12 \text{ kN/m}^3$, It is required to answer the follows:-

1- Provide a full design for only **B2** and marginal beam **B3**. (NOTE: design of solid slabs are not Req.)
2-Draw reinforcement details;

- Use Min. values of solid slab then draw RFT FOR ONLY HORIZONTAL STRIP scale of 1:100.
- For beam B2, provide ONLY HALF longitudinal section with scale of 1:100 and cross section with 1:25.

Question No. 2 (25%):-

The shown hall is supposed to be designed with the given data: $F.C = 1.5 \text{ kN/m}^2 \text{ L.L} = 2.0 \text{ kN/m}^2 \text{ Floor height} = 3.00 \text{ m}$. It is required to:

- 1- Make a full analysis followed by complete design for the given flat slab.
- 2- Execute a check of punching for column C.
- 3- With a scale of 1:100, draw RFT for only one column and field strip. Also draw RFT around opening.

