Kafrelsheikh University Faculty of Engineering Electrical Engineering Dept. Subject: Multimedia (Full Mark: 70 Marks)

Third Year Student
Computer & Control System Dept.
Final Exam
Date: 29 / 12 / 2019
Time Allowed: 3 hours

Course Code ECS3111 The Multimedia course intend the following iLOS according to (NARS 2009): a (8, 11, 14, 15) - b (8, 14, 18) - c (14, 15) - d (2, 6, 7, 8)

Answer the following Four question: (In two Pages)

Question 1 (20 Marks)

- (a) Mention briefly the main parameters that affect the visibility of colors.
- (b) What is Dithering? Discuses its main strategy. Give some uses for it.
- (c) Suppose we have available 24 bits per pixel for a color image. However, we notice that humans are more sensitive to R and G than to B in fact, 1.5 times more sensitive to R or G than to B. How could we best make use of the bits available?
- (d) What is Gamma Correction? By drawing, explain the effect of CRT on light emitted from screen before and after gamma correction.
- (e) Color inkjet printers use the CMY model. When the cyan ink color is sprayed onto a sheet of white paper,
 - (i) Why does it look cyan under daylight?
 - (ii) What color would it appear under a blue light? Why?

Question 2 (15 Marks)

- (a) To make matters simpler for eventual printing, we buy a camera equipped with CMY sensors; as opposed to RGB sensors (CMY cameras are in fact available).
 - i. Draw spectral curves depicting a camera's sensitivity to frequency.
 - ii. Could the output of a CMY camera be used to produce ordinary RGB pictures? How?
- **(b)** Digital video uses *chroma subsampling*. What is the purpose of this? Draw the chroma sampling schema that represents the chroma pixel values per four original pixels.
- (c) NTSC video has 525 lines per frame and 63.6 Msec per line, with 20 lines per field of vertical retrace and 10.9 Msec horizontal retrace.
 - i. Where does the 63.6 Msec come from?
 - ii. Which takes more time, horizontal retrace or vertical retrace? How much more time?
- (d) Color models in images differ from the color model of Video. Mention the types of color model for image and video. And most famous application for both.

Question 3 (20 Marks)

- (a) i. Scientifically, what is meant by: "the color, visible to humans, is out-of-gamut for our display"?
 - ii. How it can be maintained?
 - iii. Draw the CIE chromaticity diagram for monitor color in-gamut and printer gamut.
- (b) There are two ways for representing Analog Video. Compare between them in details (with drawing if possible). Mention types of Analog TV systems.
- (c) -What are the most salient differences between ordinary TV and HDTV?
 - -What was the main impetus for the development of HDTV?
 - -Mention the main parameters to specify digital video.
- (d) Sampling and Quantization are two important steps for Sound signal. Comment with drawing.
- (e) Compute the Signal-to-Noise Ratio (SNR) for an Audio signal, if the signal amplitude A signal is 20 times the noise.

Question 4 (15 Marks)

- (a) Express in steps the algorithm of the Dictionary-based Coding (LZW) encoder for lossless compression.
- **(b)** What is difference between Lossless Compression and Lossly Compression? Mention different types for each Lossless and Lossly compression techniques.
- (c) In Lossless JPEG compression, *The Predictive method* is used to predict the values of pixels. Explain this statement and draw a diagram that express the method.
- (d) Study the following strings and answer the question below:

$$$1 = 1 \ 1 \ 1 \ 12 \ 1 \ 23 \ 54 \ 54 \ 56 \ 3 \ 111 \ 111 \ 111$$
, $$2 = 1 \ 5 \ 6 \ 8 \ 9$

- i. Perform the Run length compression algorithm for \$1 and \$2
- ii. Calculate the compression ratio for each code. Which one is the best case?why?
- (e) Based on the following symbols and associated probabilities (in brackets):

$$A(0.5)$$
 $B(0.15)$ $C(0.15)$ $D(0.1)$ $E(0.1)$

Form Huffman Tree for that problem.

With my best wishes

Dr. Ghada Hamisa