Kafrelsheikh University Faculty of Engineering Physics & Engineering Mathematics Dept. eering Mathematics (2b)

Date: 2/6/2018 Time allowed: 3hours Full mark: 110

Final Term Exam: 2page

Year: Preparatory year Subject: Engineering Mathematics (2b) (PHM0001)

All questions cover ILOs: a1,a5,b1,b2 and b7.

Question 1: (25 Marks)

1. Find the equation of the circle centered at (-3,2) and passing through the point (5,8).

(a1,a5,b5) (8 Marks)

2. Discuss the parabola $r - r \cos \theta - 4 = 0$.

(a5)(8 Marks)

3. Write the optical property for each of the following conic sections: parabola, ellipse and hyperbola. (a1,a5,b5)(9 Marks)

Question 2: (30 Marks)

1. Study the following equation and sketch the graph: $4x^2+9y^2-32x+36y+64=0$. (a1, b5)(10 Marks)

2. Prove that the equation $3x^2 - 4xy + y^2 - x - y - 2 = 0$ represents pair of lines and find each of them, also find the point its intersection and the angle between them. (a5,b5)(10 Marks)

3. If the axes are rotated by angle $(\pi/4)$ about the origin, find the new form of the equation: $7x^2 + 2xy + 7y^2 = 4$. (a1, b5)(10 Marks)

باقى الاسئلة خلف الورقة

Kafrelsheikh University Faculty of Engineering Physics & Engineering Mathematics Dept.

Date: 2/6/2018 Time allowed: 3hours Full mark: 110

Final Term Exam: 2page

Year: Preparatory year

Subject: Engineering Mathematics (2b) (PHM0001)

Question 3: (30 Marks)

1. Evaluate the following integrals:

(a5,b7)(15 Marks)

$$a \cdot \int \frac{x^4}{x^3 + 8} \, dx$$

b.
$$\int \frac{1}{1 + \sec x} dx$$

$$c. \int \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) dx$$

- formula for $\int \sin^n x \, dx$ and hence 2. Derive the reduction $\int \sin^4 x \, dx \, .$ (a5,b7)(8 Marks)
- 3. Find the length of the curve $x = a \sin^3 \theta$, $y = a \cos^3 \theta$ between the points (a5,b7) (7 Marks) $\theta = 0$ and $\theta = \pi/2$

Question 4: (25 Marks)

- 1. Evaluate an approximate value for $\int_{0}^{\pi/2} \frac{\sin x}{x} dx$ using Simpson method
- dividing the interval into 6 subintervals ($\underline{\mathbf{n=6}}$).

(b1,b7)(5 Marks)

2. Evaluate the integrals:

(a5,b1,b7)(10 Marks)

a.
$$\int_{-\pi/4}^{\pi/4} \frac{(1-\cos 2x)^{5l^2} + x \ln(x^2+1)}{\tan^4 x} dx$$

$$b. \int \frac{1}{4e^{2x} - 3e^x} dx$$

3. Find the area between the two curves $y = x^2$ and $y = \sqrt{x}$ between x = 0(a5,b7) (10 Marks) and x = 2.

With our best wishes

Prof. A.A. Elzaher Nasef nd Dr Samah El-Kholy
A.A. Nasyn, Samah