Kafr Elshickh University
Faculty of Engineering
Department of
Engineering Physics and Mathematics
First Year (Mechanical Engineering Students)

30 - 5 - 2017 3 Hours 60 Marks Final Exam

Engineering physics (2)

Question(1): (15 Marks)

a. The position of a particle is given by

 $x(t) = 5\cos(2\pi t + \pi) \quad m$

Determine the velocity and acceleration of the particle at t = 0.25 s

- b. An object with mass (m) attached to a spring with constant (k) moves without friction and is driven by an external force ($F_{ext} = F_o \sin \omega t$)
 - Find the expression for the amplitude of the motion.
 - Determine the amplitude at (m=2 Kg), (k=20 N/m) and $(F_{ext}=6 \sin 2\pi t)$

Question(2): (15 Marks)

a. A pulse moving to the right along the x-axis is represented by the wave function $y(x,t) = \frac{4}{(x-5t)^2+1}$

where x and y are measured in centimeters and t in seconds.

Draw the wave function at a t=0 and t=1s.

b. A police car is traveling at (40 m/s) chases a motorist traveling at (30 m/s). The police siren is turned on and is heard by the policeman at a frequency of (600 Hz). What frequency does the motorist hear?

(The speed of sound wave = 345 m/s)

c. Write the (Electromagnetic spectrum) on the following (wavelength scale).

Question(3): (10 Marks)

(a) In photosynthesis, pigments such as chlorophyll in plants capture the energy of sunlight to change CO_2 to useful carbohydrate. About nine photons are needed to transform one molecule of CO_2 to carbohydrate and O_2 . Assuming light of wavelength $\lambda = 670$ nm (chlorophyll absorbs most strongly in the range 650 nm to 700 nm), how efficient is the photosynthetic process? The reverse chemical reaction releases an energy of 4.9eV/molecule of CO_2 so 4.9 eV is needed to transform CO_2 to carbohydrate.

(b) In case of Compton scattering consider the electron initially at rest. Prove that $\Delta \lambda = \lambda' - \lambda = (h/m_e c) (1 - \cos \phi)$

(c) Discuss the blackbody radiation.

Question(4): (10 Marks)

(a) What are the wave function and its interpretation?

- (b) Solve Schrodinger equation for a particle in infinite quantum well.
- (c) Discuss the quantum tunneling phenomena.

Question(5): (10 Marks)

- (a) Write down the eight quantum states allowed for electrons in the L-shell.
- (b) An excited atom gives up it excess energy by emitting a photon of characteristic frequency. The average period that elapses between the excitation of an atom and the time is radiates is 1×10^{-8} s. Find the inherent uncertainty in the frequency of the photon.
- (c) The state of a free particle is described by the following wave function

 $\Psi(\mathbf{x}) = 0 \text{ for } \mathbf{x} < -3\mathbf{a}$

 $= c e^x for - 3a < x < a$

= 0 for x > a

- (i) Determine c using the normalization condition
- (ii) Find the probability of finding the particle in the interval [0, a]

Useful data: $m_e = 1.6022 \times 10^{-19} \text{C}$, $q_e = 9.1 \times 10^{-31} \text{kg}$ and $h = 6.62 \times 10^{-34} \text{J.s}$

Best Wishes

Dr. Ahmed Saeed

Dr. Demyana Adel Abdel Masieh