Cリビリーション Kafrelsheikh University

Faculty of Engineering

Department of electrical engineering

Subject: Signals Processing

Instructors: Dr. Bedir B. Yousif

2nd Year

21/5/2016 Date: Time allowed: 3 Hours Full mark: 90 Mark

Final term Exam: two pages Academic Number: ECE

Solve all the following questions:-

* Any missing data could be reasonably assumed and books ¬es are not allowed.

Solve the following questions:-

Question one (30 mark)

- 1. Classify the following signal $f(t)=e^{-|t|}$, if its power or energy signal for $(-\infty, \infty)$ 2. If $\varphi_1(t)=e^{-|t|}$, $\varphi_2(t)=1-Ae^{-2|t|}$ Find the constant A for orthogonality over the duration $(-\infty, \infty)$.
- 3. If $\varphi_0(t) = 1$, $\varphi_1(t) = t$, and $\varphi_1(t) = \frac{3}{2}t^2 \frac{1}{2}$, Represent f(t) = |t| over (-1,1) using this set of orthogonal functions.
- 4. Find the total harmonic distortion, the average power, amplitude and phase line spectra for periodic signal f(t)=2t over the period (0,1) if n=0,1,2,3,4,5.
- 5. Drive an expression for a power signal using Parseval's theorem in the form using exponential Fourier series coefficient and trigonometric Fourier series coefficients?
- 6. Determine the average power of $f(t)=2\sin(100t)$. using a-General formula
- b- Trigonometric Fourier series coefficients Parseval's theorem?
- c- Exponential Fourier series coefficient Parseval's theorem?

Question Two (30 mark)

1- Find the generalized Fourier series for the following periodic signal in Fig. 1 If the basis function set is $\cos(\frac{n\pi}{4}t)$ and Find the second and third harmonic distortion.

2- Plot the spectral density function of the following signal

$$f(t) = \begin{cases} 1 - \frac{|t|}{\tau} & |t| \le \tau \\ 0, & |t| \le \tau \end{cases}$$

- 3- From the given spectral density function $F(\omega) = \frac{0.5}{a+j(\omega-\omega_0)} + \frac{0.5}{a+j(\omega+\omega_0)}$. Find f(t)
- 4- Drive an expression for natural sampled signal in time and frequency domain with sketching the waveforms and avoid the aliasing problem?
- 5- For a given magnitude and phase spectrum functions $|F(\omega)| = \pi : if W_0 \le \omega \le W_0$ and $|F(\omega)| = 0$; otherwise and $\varphi(\omega) = \frac{\pi}{2}$; if $\omega \le 0$; and $\varphi(\omega) = \frac{-\pi}{2}$ if $\omega > 0$.
- 6- A 64 level quantizer for a signal y(t)=15 sin 500t + 20 sin 2000t. (a) Find the band width of analog and digital signal (b) signal to noise ratio

Question Three (30 mark)

- 1- A signal $f(t) = \text{sinc}(5\pi t)$ is sampled using spaces impulses at rate of (i) 5 Hz, (ii) 10 Hz; (iii) 20 Hz. For each of the three cases:
 - (a) Sketch the sampled signal
 - (b) Sketch the spectrum sampled signal.
 - (c) Explain whether you can recover the sinal g(t) from the sampled signal.
- 2- A television signal (video and audio) has a bandwidth of 4MHz. This signal is sampled, quantized, and binary encoded to obtain a digital signal.
 - (a) Determine the sampling rate if the signal is to be sampled at a rate 10% above the Nyquist rate.
 - (b) If the samples are quantized into 512 levels, determine the number of binary pulses required to encode each sample.
 - (c) Determine the binary pulse rate (bits per second) of the binary-coded signal, and the minimum bandwidth required to transmit this digital signal.
 - (d) Determine the signal to noise ratio.
 - (e) Find the number of levels that will required to make the signal to noise ratio ≥70 dB
 - 3- Find the signal x(t) corresponding to the spectral density function in Fig. 2

Best wishes of success Dr. Bedir yousif