Kafrelsheikh University Faculty of Engineering

Department: Electrical Power and Machines

Year: 2nd year (2007) 2015-2016 Subject Energy Conversion Name: Dr. Amlak Abaza

Date: 4-6-2016.
Time Allowed: 3 hrs.
Full Mark: 90 Marks.
Final 2nd Term Exam: 2 pages
Academic Code: EPM 2204.

Answer All The Following Questions:

Question (1) (25 Marks)

- a) Fig. 1 shows a magnetic circuit of iron of high permeability. Two air gaps each of length g and area A_g and a permanent magnet (PM) of length l_m and area A_m .
 - i. <u>Determine</u> the necessary condition to minimize the volume of PM for a desired value of the flux density in the air gap.
 - ii. With the aid of B-H curve of PM show the point of maximum energy product
- b) The coils of the magnetic circuit shown in Fig. 2 are connected in series so that the mmf's of paths A and B both tend to set up flux in the center leg C in the same direction. The coils are wound with equal turns, $N_1 = N_2 = 1000$. The air gap length = 0.4 cm and the dimensions are:

Path	A	В	C
Length (cm)	17	17	5.5
Area (cm ²)	7	7	14

The core is made of M-5 grain oriented steel having B-H relation given in the following table:

	H(AT/m)	8	9.5	12	17	27
	B(Tesla)	0.6	0.8	1.0	1.2	1.4

Neglect fringing and leakage.

- i. *Find* the amperes required to produce a flux density of 1.2 T in the air gap.
- ii. *Calculate* the inductances.

Question (2) (20 Marks)

- a) In a doubly excited magnetically linear system with saliency associated with both the rotor and stator, *derive* an expression for:
 - i. The induced voltage in the system, *explaining* both motional and transformer induced voltages.
 - ii. Incremental electrical energy dW_{elec} and electrical power
- b) Fig. 3 shows in cross section a cylindrical solenoid magnet in which the cylindrical plunger moves vertically in brass guide rings of thickness g and mean diameter d. the permeability of brass is the same as that of free space. The coil has N turns and resistance R ohms. Its terminal voltage is V, and its current is i. the effect of magnetic leakage and reluctance of the steel are negligible.
 - i. <u>Derive</u> expressions for the magnetic reluctances in terms of x
 - ii. <u>Derive</u> expressions for the inductance in terms of x and dimensions.
 - iii. Derive an expression for The magnetic force acting upward on the plunger

Question (3):

(25 Marks)

- a) Discuss briefly:
 - i. The magnetic hysteresis ii. Coenergy iii. Self and mutual inductances
- b) For a linear translational electromechanical energy system, <u>derive</u> an expression for current, flux linkage and force in terms of stored energy and coenergy
- c) Consider a singly-excited system with cylindrical stator and rotor. The excitation via the stator coil is given by:

 $i_s(t) = \sqrt{2} I_s \cos(\omega t + \delta)$

The excitation via the rotor current is de excitation, I_{rde}

Find:

- i. The torque on the rotor in terms of the coil current and the rotor position.
- ii. The value of average torque, if the rotor rotates at a constant angular velocity of ω (i.e. it is equal to the current angular frequency).
- iii. The numerical value of average torque for $I_s=10$ A, $I_{rdc}=0.6$ A, $M_{max}=0.05$ mH and $\delta=0.0$

Question (4)

(20 Marks)

- a) Explain the dot convention employed to determine the polarity of the mutually induced voltages.
- b) Explain, briefly, the operation conditions and construction of the synchronous machine.
- c) <u>State</u> three types of renewable energy sources and <u>discuss</u> the direct and indirect method for both solar and geothermal energy conversion, (<u>Give</u> diagrams showing the element of such plants).

'Fig. 2 Magnetic circuit of Q1 (b)

Fig. 3 Magnetic circuit of Q2

Best Wishes

Dr. Amlak Abaza