

KAFRELSHEIKH UNIVERSITY FACULTY OF ENGINEERING TIME ALLOWED: 3 HOURS

ELECTRICAL ENGINEERING DEPT. 2nd YEAR FINAL EXAM OF 1st SEMESTER 2015-2016 MICROPROCESSOR SYSTEMS

The maximum mark for the examination paper is 60 marks, and the mark obtainable for each part of a question is shown in brackets alongside the question.

Instructions to the candidates:

- Clarify your answer with the suitable sketches as you can.
- Please use a pen or heavy pencil to ensure legibility.
- Assume any missed data reasonably.
- Please attempt all questions.

QUESTION NUMBER ONE [25 MARKS]

	15.00	HOR HORIDER OHE [20 HIRRING]	
	1.	What does the term "memory access time" mean? Why does instruction that requiring memory access takes machine cycles more than instruction that requiring register access?	[4 Marks]
	2.	What is the purpose of the system buses? Which bus controls how much memory you can have? Which control signal causes the memory to perform a read operation? Does the size of the	FE Stantal
	3.	data bus control the maximum value the CPU can process? Explain. Show how the flag register is affected by the addition of E023 and ABOF. Will an overflow	[5 Marks]
		occur if a signed FF is added to a signed O1? Which instructions set and clear the D-flag?	[5 Marks]
	4.	Describe what happens when a new number is loaded into a segment register when microprocessor is operated in the protected mode? In the real mode, show the starting and	3
		ending addresses of each segment located by the following segment register value: ABOOH.	[4 Marks]
	5.	Code a descriptor that describes a memory segment that begins at location 03000000H and ends at location 05FFFFFFH. This memory segment is a data segment that grows upward in	
	•	the memory system and can be written. The descriptor is for a Pentium 4 microprocessor.	[5 Marks]
	6.	What assembly language directive indicates the start of the code segment? What is the purpose of the .MODEL TINY statement? What tasks does the .data directive accomplished in	
		the small memory model?	[2 Marks]
0	UES.	TION NUMBER TWO [25 MARKS]	
	1.	What, if anything, is wrong with a MOV AL, [BX] [SI]? What is a displacement? How does it	
		determine the memory address in a MOV DS: [2000H], AL instruction?	[4 Marks]
	2. 3.	Explain the difference between the MOV BX, DATA instruction and the MOV BX, OFFSET DATA. Suppose that DS = 1000H, BX = FF00H, and DI = 1000H. Determine the memory address	[5 Marks]
	•	accessed by the following instruction, assuming real mode operation: MOV AL, [BX+DI]	[3 Marks]
	4.	Which instruction places the EFLAGS on the stack in the Pentium 4 microprocessor? What segment register may not be popped from the stack? Then, explain what happens when the	
		PUSH BX instruction executes. Make sure to show where BH and BL are stored (Assume that $SP = 0100H$ and $SS = 0200H$.)	[6 Marks]
	5.	In a machine language instruction, what information is specified by the MOD field? Convert an 8B9E004CH from machine language to assembly language. If a MOV SI, [BX+2]	e e e e e e e e e e e e e e e e e e e
		instruction appears in a program, what is its machine language equivalent?	[7 Marks]

QUESTION NUMBER THREE [10 MARKS]

1. Describe how the LDS BX, NUMB instruction operates.

[2 Marks]

2. Explain the operation of the LODSQ instruction for the 64-bit mode of the Pentium 4 or Core2. Then, explain the operation of the OUTSB instruction.

[4 Marks]

3. Write a short sequence that read data from extra segment memory location O46CH and stored it an array that is indirectly addressed through register BX (containing 50 bytes).

[4 Marks]

Given the contents of the microprocessor 80286

$$(IP) = 032FH$$

$$(BX) = 1200H$$

$$(AX) = A1B2H$$

$$(CS) = 1000H$$

$$(DS) = 2000H$$

$$(CX) = D7E6H$$

$$(BP) = 1000H$$

$$(ES) = 3000H$$

$$(SS) = 2000H$$

$$(DX) = E1C2H$$

$$(SP) = 15FCH$$

32-bit mode selected R/M

R/M Code	Function
000	DS:[EAX]
001	DS:[ECX]
010	DS:[EDX]
011	DS:[EBX]
100	Uses scaled-index byte
101	SS:[EBP]*
110	DS:(ESI)
111	DS:JEDI]

*Note: See text section, Special Addressing Mode

The scaled-index byte.

1		
	Barron van de ser et de 1844 gener like vinnegen uitseld	1404

Segment register Selection

Code	Segment Registe	er
000	ES	-
001	CS*	
010	SS	
011	DS	
100	FS	
101	GS	

80386/80486/Pentium/Pentium Pro descriptor

Ва	se (B	31-B	24)	G	D	0	A (L	Limit 19-L1	6
Access rights			Base (B23B16)						
Base (B15-B0)									
Limit (L15-L0)									
7	6	5	4	3	_	2	1	0	1
Р	DF	L	S	E	1	ED	RM	A	

REG and R/M when MOD = 11

Saldensk orbitalists			
Code	W≠0 (Byte)	W≈1 (Word)	W=1 (Doublewor
000	AL	AX	EAX
001	CL	CX	ECX
010	DL	DX	EDX
011	BL	BX	EBX
100	AH	SP	ESP
101	CH	BP	EBP
110	DH	SI	ESI
111	Вн	OI	EDI

16bit R/M memory mode

R/M code	Addressing Mode			
000	DS:[BX+SI]			
001	DS:[BX+DI]			
010	SS:[BP+SI]			
011	SS:(BP+DI)			
100	DS:[SI]			
101	DS:[DI]			
110	SS:[BP]*			
111	DS:[BX]			