

Date: 2/1/2019 Time allowed: 3 hours Full mark: 90 Final Term Exam: 1page

The following questions measure ILOs a1, a2, b1, b2 and c1.

Question 1: (a1,b2) (35 Marks)

1. Find the domain of definition of the following function:

$$f(x,y) = \ln(|x|+|y|-2)$$
.

2. Can f(0,0) be defined so that f(x,y) is continuous at (0,0) when

$$f(x,y) = \frac{\sin(x^2 + y)}{x + y}.$$

3.Let w = f(x,y), $\tan u - \sin v = 3x + 2y$ and $\cos u - 2\ln v = 3x - y$ then find $\frac{\partial w}{\partial u}$

4. Expand in Maclurin series the function, $f(x,y) = \cos 3(x+y)$.

5. Prove that if z = f(x, y) is homogeneous of degree k, then $xz_x + yz_y = kz$, and If $z = \ln[(x^3 + 2xy^2 + y^3)/(x - y)]$ then find the value of $xz_x + yz_y$.

6. Find the shortest distance from the point $z_0 = (1, -2, -1)$ to the straight line

$$x = y = z$$
.

7. Verify Green's theorem for the integral $I = \oint_C y dx + 2x dy$, where C is the ellipse

$$x^2 + \frac{y^2}{4} = 1$$
.

Question 2: (a1,b2, b1) (40 Marks)

1. Find the differential equation of the family of circles centered at (C,0) and with radius

2. Find the orthogonal trajectories of $r = c(\sec \theta + \tan \theta)$.

Solve the D. Eqs.:

A)
$$(\cos 2x \sin x - xy^2)dx - y(x^2 - 1)dy = 0$$

$$B) xy' + y = xy^2 \ln x$$

C)
$$x y^2 dy + (x^2 + 1)(y + 1)dx = 0$$

4. Solve the D. Eqs. :

A)
$$D^2(D^2+4)(D+1)^2y=4^x+\cos x$$
.

B)
$$(D^6 + 5D^4 + 4D^2)y = 2e^x + \sin^2 x$$
.

C)
$$y'' + y = \ln(\sin x)$$
.

$$(3) x^2 y'' - 2xy' + 2y = 5 + 2x^2 \ln x .$$

Question 3: (b1, c1) (15 Marks)

1. Evaluate Laplace transform for:

$$A)f(t) = (t^3 + t\cos 2t)\cosh t$$

A)
$$f(t) = (t^3 + t \cos 2t) \cosh t$$
. B) $f(t) = e^{2t} \int_0^t \frac{\sin u}{t} du$.

2. Find inverse Laplace for:

A)
$$L^{-1}(\frac{s+2}{s(s^2+1)})$$

B)
$$L^{-1}(\ln \frac{s+5}{s-1})$$

Solve the following differential equation using Laplace transform:

$$y'' - y = e^{2t}$$
, $y(0) = y'(0) = 0$.

Good Luck Dr. Samah Ll-khol

Scanned by CamScanner