Kafrelsheikh University

Faculty of Engineering

Physics & Engineering Mathematics Dept.

Year: Prep.

natics Dept. Konnali Jacob C 13617
Subject: Engineering Mathematics (1)

Date: 30/5/2016

Time allowed: 3 hours

Full Marks: 110

Final-Term Exam: 2 pages

Answer the following questions:

Question 1: [28 marks]

a) Describe the parabola : $x^2 + 2y = 8x - 7$

- b) Find the equation of an ellipse whose vertices are (-2,1), (0,1), (-1,-1), (-1,3). Also, discuss and sketch it.
- c) Describe the curve: $2x^2 y^2 2x 4y = 0$

Question 2: [27 marks]

- a) Prove that: $r = a \sin \theta + b \cos \theta$ represent a circle and find each of its center and its radius.
- b) Find the value of k to represent the following equation pairs of lines, also find the point of its intersections and the angle between them.

$$2x^{2} + kxy - 6y^{2} + 3x + y + 1 = 0$$

c) If the origin is translated to the point (-1,2) and the axes rotated by +ve angle π / 4 , find the new form for the equation:

$$4x^2 + y^2 + 8x - 4y + 7 = 0$$

"Kafrelsheikh University

Faculty of Engineering

Physics & Engineering Mathematics Dept.

Subject: Engineering Mathematics (1)

Date: 30/5/2016

Time allowed: 3 hours

Full Marks: 110

Final-Term Exam: 2 pages

Question 3: [28 marks]

a) Answer the following using "true" or "false", in the false case state the correct answer:

$$(1) \int \frac{f'(x)}{\sqrt{1-[f(x)]^2}} dx = \sin^{-1}[f(x)] + c \qquad (2) \int (\cos 3x) e^{\sin 3x} dx = -e^{3\sin x} + c$$

$$(2) \int (\cos 3x) e^{\sin 3x} dx = -e^{3\sin x} + c$$

$$(3) \int_a^a f(x) dx = 0$$

$$(4) \int \frac{\cos 2x}{\left[5 + 4\sin 2x\right]^2} dx = \frac{1}{\left[5 + 4\sin 2x\right]^2} + c$$

b) Find the following integral:

$$(1) \int x \tan^3(5x^2) dx$$

$$(2)\int \frac{x^3}{(2+3x)^4}dx$$

(3)
$$\int \frac{dx}{\sqrt{8+2x-x^2}}$$

$$(4) \int 2^{(1+\cot 5t)} \csc^2(5t) dt$$

c) Find the reduction formula of the integral:

$$I_n = \int x^n \sin(ax) dx$$
, then find $\int x^2 \sin(5x) dx$

Question 4: [27 marks]

a) Find the area between the following curves: x + 2y = 4, $y^2 = 4 + x$

b) Find the output volume from the rotation of the closed area between the **curves:** $y^2 = 8x$, x = 3 and x - axis

- (1) The rotation around x-axis
- (2) The rotation around y-axis
- c) Use the Simpson's and trapezoidal rules with step length h=0.4

to estimate $I = \int_2^6 \frac{\ln(2+3\sqrt{x})}{1+x^2} dx$ and compare your result with exact solution I=0.596545