

Solve all FIVE QUESTIONS. Assume reasonable values for any missing data.

Question 1: [10 Marks]

The rosette shown in figure (1) have been used to determine the following strains at a point on the surface of a crane hook:
$\varepsilon 1=+420 \quad \varepsilon 2=-45 \quad \varepsilon 4=+160$
(a) What should be the reading of gauge 3 ?
(b) Determine the principle strains and the maximum in-

Figure (1) plane shearing strain.

Question 2: [15 Marks]

At a point in a stressed body, there exists a plane stress condition as shown in figure (2). If $\sigma x=200 \mathrm{MPa}, \sigma y=100 \mathrm{MPa}, \tau x y=40 \mathrm{MPa}$, determine:
a) The principle Stresses and the maximum and minimum shear stresses.
b) The planes on which these stresses act

c) If Young's Modulus $E=200 \mathrm{GPa}$, and Poisson's Ratio $\nu=0.3$, find the principle strains and the maximum and minimum shear strains.

Figure (2)

Question 3:(15 Marks)

Prove that:
A) $\sigma_{1}=\frac{\left(\sigma_{x}+\sigma_{y}\right)}{2}+\sqrt{\left(\frac{\left(\sigma_{x}-\sigma_{y}\right)}{2}\right)^{2}+\tau_{x y}{ }^{2}}$
B) $\quad \sigma_{z}=\frac{E}{(1+v)(1-2 v)}\left[(1-v) \varepsilon_{z}+v\left(\varepsilon_{x}+\varepsilon_{y}\right)\right]$

Question4:(15 Marks)

A thin walled cylindrical pressure vessel has a mean diameter $\mathrm{D}=1000 \mathrm{~mm}$, length $\mathrm{L}=2000 \mathrm{~mm}$, and thickness $\mathrm{t}=2 \mathrm{~mm}$, and contains a fluid of pressure (P) MPa. An element on the wall of the vessel as shown in Figure (4), is subjected to a shear stress $\tau_{\mathrm{xy}}=30 \mathrm{MPa}$. If the yield stress for the vessel material $\sigma_{y}=100 \mathrm{MPa}$ and using a Safety Factor $\mathrm{FS}=2$, find:

1- Maximum pressure (P).
2- draw Mohr Circle then Maximum shear stress on the element ($\tau_{\max }$).
3- The planes at which $(\tau / \sigma)=m a x$, and find its values of τ and σ.
4- The planes at which $(\sigma / \tau)=m a x$, and find its values of τ and σ.

Figure (3)

Question5:(15 Marks)

The stepped shaft (ABCD) at figure (4) is consisting of three steps $(A B),(B C)$, and $(C D)$, and is fixed at its both ends at (A), and (D). Two equal forces (F) act at opposite directions at B, and C, and equal to 5 KN . The data of the stepped shaft are given at the following table, where d, L, and E are the diameter, length, and Young's modulus respectively. Find:

1. The deflection (δ) at section (AB) and total deflection of (BD).
2. The normal stress (σ) at sections (BC) and (CD).

	$d(\mathbf{m m})$	$L(\mathrm{~mm})$	$E(\mathbf{G P a})$
$A B$	20	300	75
$B C$	10	300	105
$C D$	6	300	200

Good Luck, Associate Prof. Ahmed Galal

