seis les "set agailers (1)

Kaferelsheikh University

21) Co J

Faculty of Engineering

Year: 3rd Electronics and

Electrical Communication

Department of Electrical Engineering

Subject: Electromagnetic waves Academic Number: EPM 3130

Full Mark: 90 degree

Final Exam: 2 pages

Date: 10 /1/2018

Time allowed: 3 h

This exam measures the ILOs (a.4, a.20, a.21, b2, b3, c1 and c2)

Answer the following questions:

[1] Question One: (20 Mark)

A- Write down the conditions for the following mediums:

- Perfect dielectric - lossy dielectric

-good conductor

[a.20.1 (5 marks)]

B- Starting with Maxwell equations, , <u>drive</u> the wave equation which describes the time and distance evolution for the electric field [c.1.1(5 marks)]

C- <u>Discuss</u> the effect of the dispersive medium on the electromagnetic wave velocity

[a.21.1*(5 marks*)]

D- The electric field in free space is given by: $E = 50 \cos(10^8 t + \beta x) a_y V / m$

i- Find the direction of wave propagation

ii- Calculate β and the time it takes to travel a distance of $\lambda/2$

[c.1.1(5 marks)]

[2] Question Two: (25 Mark)

A- A lossy dielectric has an intrinsic impedance of $200e^{j\pi/6}$ at a particular frequency. If, at that frequency, the plane wave propagating through the dielectric has the magnetic field component $H = 10 e^{-\alpha x} \cos(\omega t - 0.5x)a_y$ A/m. <u>find E</u> and <u>Determine</u> the skin depth and wave polarization

B- A 5-GHz uniform plane wave $E_{is} = 10e^{-j\beta z}a_x$ V/min free space is incident normally on a large plane, lossless dielectric slab (z>0), having $\varepsilon_r = 4$ and $\mu_r = 1$. Find the electric field components of both the reflected and transmitted waves [a.21.1, b.3.1(6 marks)]

C- <u>Derive</u> an expression for the reflection coefficient in case of oblique incidence with parallel polarization. [a.21.1, c.1.1(6 marks)]

D- A polarized wave is incident from air to polystyrene with $\varepsilon_r = 3$ and $\mu_r = 1$ at Brewster angle. **Determine** the transmission angle [c.2.1(6 marks)]

page(1/2)

[3] Question three: (20 Mark)

- A- Given a distortion less T.L having distributed parameters of R, L, G and C. <u>Deduce</u> the relation used to determine the attenuation constant [b.3.1(6 marks)]
- **B-** A 75 ohm lossless line is to be matched to a 100 j80 (ohm) load with a shorted parallel stub. <u>Use smith chart to calculate</u> the stub length, its distance from the load, and the necessary stub admittance.

 [a.4.1, b.3.1(8 marks)]
- **C) Explain** the slotted line technique used for impedance measurement.

[a.4.1(6 marks)]

[4] Question four: (25 Mark)

- A- with the aid of equations, <u>prove</u> that the wave propagation through rectangular wave guides takes zigzag paths.

 [a.21.2, c.1.2(6 marks)]
- **B-** A standard air-filled rectangular waveguide with dimensions a = 8.636 cm, b = 4.318 cm is fed by a 4-GHz carrier from a coaxial cable. **Determine** the phase velocity and the group velocity if a TE_{10} mode will be propagated. [b.2.1, c.1.2(7 marks)]
- C- <u>Design</u> a rectangular waveguide with an aspect ratio of 3 to 1 for use in the k band (18-26.5 GHz). Assume that the guide is air filled. [b.2.1, c.2.1(6 marks)]
- **D-** <u>Design</u> an air-filled cubical cavity to have its dominant resonant frequency at 3 GHz

 [b.2.2, c.2.1(6 marks)]

Best Wishes

Committee of Correctors and Testers

Dr. Shamia Ghamry page(2/2)