انعالات

Kafrelsheikh University

Faculty of Engineering

Dept. Electrical Engineering

Year: 3rd Year communication

Subject: Electronic Devices (ECE3107)

Semester: 1st Semester Final Examination Date: Dec. 24th, 2017 Time allowed: 3 hours.

Full Mark: 100

(a) This exam measures ILOs no.: a.5, a. 13,a14, b.5, b.6, b.8, c.5,d.1, d.7.

(b) No. of pages: 2 - No. of questions: 5

(c) Ask for clarification if any question statement is not clear to you.

Question # 1 (20 Marks...5 Marks for each part)

- 1. Explain the effect of cyclotron resonance frequency on observation the microwave energy.
- 2. Drive an expression that the Fermi level E_f is in the middle of the band gap in the intrinsic semiconductor.
- 3. Boron atoms are added to a S_i film resulting in an impurity density of 4×10^{16} cm⁻³.
- (a) What is the conductivity type of this film?
- (b) What are the equilibrium electron and hole densities at 300 K?
- (c) The mobile carrier concentration increase at high temperatures, explain?
- (d) Where is the Fermi level located if T = 600 K?
- 4. Show that the probability of an energy state being occupied ΔE above the Fermi level is the same as the probability of a state being empty ΔE below the Fermi level.

$$f(E_{\rm F} + \Delta E) = 1 - f(E_{\rm F} - \Delta E).$$

Question # 2 (20 Marks...5 Marks for each part)

- 1. How can be distinguishes between N-type and P-type, then explain thermoelectric generator.
- 2. Identify the Drift Current, and then drive a relation between it and the conductivity.
- 3. what mean by:
 - a. Charge Neutrality
 - b. Rate of recombination
- 4. (a) A silicon sample maintained at T = 300 K is uniformly doped with $N_{\rm d} = 10^{16} {\rm cm}^{-3}$ donors. Calculate the resistivity of the sample.
- (b) The silicon sample of part (a) is "compensated" by adding $N_a = 10^{16} {\rm cm}^{-3}$ acceptors. Calculate the resistivity of the compensated sample.
- (c) Compute the resistivity of intrinsic ($N_a = 0$, $N_d = 0$) silicon at T = 300 K. Compare it with the result of part (b) and comment.

Question # 3 (20 Marks...5 Marks for each part)

- 1. Drive an expression of the field potential in the depletion layer, sketch the depletion layer model.
- 2. Drive an expression for the current transfer from the silicon to metal due to thermionic emission theory in all conditions.
- 3. Identify the following:
- Space-Charge Region (SCR) current
- Fermi Level Pinning

Question (3):

- a) What do you understand by generalized circuit constants of a transmission line? What is their importance? (5 Marks)
- b) Why transmission lines are 3 phase 3 wire circuits while distribution lines are 3 phase 4 wire circuits? (5 Marks)
- c) A 3-phase load of 2000 kVA, 0.8 p.f. is supplied at 6.6 kV, 50Hz by means of a 33kV, transmission line 20 km long and 33/6.6 kV step-down transformer. The resistance and reactance of each conductor are 0.4 Ω and 0.5 Ω per km respectively. The resistance and reactance of transformer primary are 7.5 Ω and 13.2 Ω while those of secondary are 0.35 Ω and 0.65 Ω respectively. <u>Find</u> the voltage necessary at the sending end of transmission line when 6.6 kV is maintained at the receiving end. <u>Determine</u> also the sending end power factor and transmission efficiency. (10 Marks)

Question (4):

- a) <u>What</u> is end condenser method of medium lines? <u>Derive</u> expression for parameters of this circuit in terms of line parameters. <u>Demonstrate</u> your answer with net graph. (6 Marks)
- b) How does the insulation resistance of a cable vary with its length? (4 Marks)
- c) A sub-station supplies power at 11kV, 0.8 p.f lagging to a consumer through a single phase transmission line having total resistance of 0.15 ohm. the voltage drop in the line is 15%. If the same power is to be supplied to the consumer by two wire D.C system by a new line having a total resistance of 0.05 ohm and if allowable voltage drop is 25%. <u>Calculate</u> the D.C supply voltage. If the consumer get any benefits <u>Show that</u>. (15 Marks)

With my best wishes
Dr. Eman Saad