Kafr Elshiekh University Faculty of Engineering Department of Physical and Mathematical Engineering Preparatory Year

Engineering physics (1)

16-03-2021 3 hours 90 Marks Final exam: 8 pages

Answer the following questions:

$$K_e = 8.9*10^9 \text{ Nm}^2/\text{C}^2, g = 9.8 \text{m/s}, e = 1.6*10^{-19} \text{C}, \quad \epsilon_{sr} = 8.8*10^{-12} \frac{c^2}{\kappa_{res}^2}, \quad \text{k for air} = 1$$

(ILOs: a1,a2,b1,c2)

Coulombs' constant K,=?

(A) E_{a}

- (B) $4\pi\epsilon_n$

(D)

Two identical small charged spheres, each having a mass of 3x10"2Kg, hang in equilibrium as shown in Fig. The length of each string is 0.15 m, and the angle θ is 5° .

Find: $\sum F_{x} = ?$

- (A) $\sum F_x = T mg = 0$ $-\sum F_{\nu}=?$
- (B) $\sum F_x = T \sin \theta F_\theta = 0 \quad (C) \quad \sum F_x = T F_\theta = 0$

(A) $\sum F_y = Y - mg = 0$

 $F_e=?$

- (B) $\sum F_y = T F_\theta = \emptyset$ (C) $\sum F_y = T \sin \theta F_\theta = \emptyset$ (D) $\sum F_y = T \cos \theta mg = \emptyset$

- (A) $2.6*10^{-2}$ N
- (B) 4.4*10⁻⁸N
- (C) = 0.013N
- (D) $2.6\,\mathrm{N}$

(A) $2.6*10^{-2}$ m

- q=?

- (B) 4.4*10⁻⁸m
- 0.013m
- (D) 2.6m

- (A) $2.6*10^{-2}$ C
- (B) $4.4*10^{-8}$ C
- (C) = 0.013C
- (D) 2.6C

. A ring of radius a carries a uniformly distributed positive total charge Q. Calculate the electric field due to the ring at a point P lying a distance x from its center along the central axis perpendicular to the plane of the ring.

 $\sum E_{n} = ?$

- (A) $\sum E_p = \int K_0 \frac{dq}{r^2} \cos \theta$
- (B) $\sum E_y = \frac{x}{\sqrt{\alpha^2 + x^2}}$ (C) $\sum E_y = \frac{K_0 xQ}{(\alpha^2 + x^2)^{3/2}}$

- (A) $\sum E_x = \int K_x \frac{dq}{r^2} \cos \theta$ (B) $\sum E_x = \frac{x}{\sqrt{\alpha^2 + x^2}}$ (C) $\sum E_x = \frac{K_y x Q}{(\alpha^2 + x^2)^{3/2}}$ (D) $\sum E_x = Q$

- cos*0* =?
- (A) $\cos \theta = -$
- (B) $\cos \theta = \frac{\pi}{2}$
- (C) $\cos \theta = \frac{x}{(a^2 + x^3)^{3/2}}$ (D) $\cos \theta = \frac{x}{a^2 + x^3}$

Electric field at point P

10. (A)
$$E = \frac{K_e Q}{(a^2 + x^2)^{3/2}}$$

(B)
$$\mathbf{E} = \frac{\mathbf{x}}{\sqrt{\alpha^2 + \mathbf{x}^2}}$$

(C)
$$F = \frac{K_g x Q}{(a^2 + x^2)^{3/2}}$$

(D)
$$E = \frac{\pi Q}{(a^2 + x^2)^{3/2}}$$

Curved Surface

Flat end

11. (A) 0.5

(B)

(C) 8

(D) 2

Find the electric field due to an infinite plane of positive charge with uniform surface charge density o.

12. (A) **GA**

- (B)
- (C)
- (D) zero

 $\oint E. dA = ?_{flat and}$

(A) σA

- (D) zero

- zero

- zero

A solid insulating sphere of radius a carries a net positive charge Q uniformly distributed throughout its volume. A conducting shell of inner radius b and outer radius c is concentric with the solid sphere and carries a net charge -2Q. Using Gauss's law, find the electric field in the regions labeled (1), (2), (3), and (4) in figure.

At region (1) $r \le a \ \mathbb{E}_1 = ?$

16. (A) E = 0

- At region (2)a<r
b E₂=?
17. (A) $E = K_s \frac{Q}{r^2}$

- 18. (A) $E = -K_e \frac{Q}{r^2}$ (B) $E = K_e \frac{Q}{r^2}$

- At region (4) r > c $E_4 = ?$ 19. (A) $E = K_x \frac{Qr}{\sigma^3}$ (B) $E = -K_y \frac{Q}{\sigma^2}$
- (C) $E = \emptyset$

$$\Phi = E.A$$

- 20. (A) Electric flux N/C E=?
- (B) Electric field N/C
- C) Electric field Nm²/C
- (D) Electric flux Nm³/C

- 21. (A) Electric flux N/C
- (B) Electric field N/C
- (C) Electric field Nm²/C
- (D) Electric flux Nm²/C

$$\oint \mathcal{B}.\,dA = \frac{q_{in}}{\epsilon_a}$$

- 22. (A) Ohm's law
- (B) Coulombs' law
- (C) Kirchhoff's law
- (D) Gauss's law

- ക ...7
- 23. (A) $\frac{q}{\epsilon_0}$

(B) $\frac{2t}{\epsilon_s}$

- (C) $\frac{3q}{\epsilon_n}$
- (D) zero

- m = 7
- 24. (A) Joule

(B) $\frac{\mathbf{N}}{C}$

- (C) Watt
- (D) $\frac{C}{N}$

- 3.2*10⁻¹⁹J=?
- 25. (A) 0.5 eV

- (B) 1 eV
- (C) 2 eV
- (D) 4 eV

If $V_A = V_B$ the surface is ?

- 26. (A) Gauss's surface
- (B) Equipotential surface
- (C) Coulombs' surface
- (D) Ohm's surface

The potential difference between two parallel sheets distance 1.5cm apart, is 2500V. Calculate the uniform electric field between the sheets.

- 27. (A) 0.6*10⁵N/C
- (B) $1.6*10^{5}$ N/C
- (C) $2.6*10^5$ N/C

(D) $3.6*10^5$ N/C

An electric dipole consists of two charges of equal magnitude and opposite sign separated by a distance 2a as shown in Fig. The dipole is along the x-axis and is centered at the origin.

Calculate:

$$V_R = ?$$

 V_p V_q V_q V_1 V_2 V_1 V_1 V_2

- 28. (A) $V_1^2 \div V_2^2$
- (B) (V₁+V
- (C) V_1+2V_2
- (D) $K_{q}q$

 $29. (A) \frac{\mathbf{K_e q}}{\mathbf{x} - \mathbf{a}}$

- $\frac{z^2}{x^2}$
- (C) zero
- $\frac{x+a}{x+a}$

- 30 (A) $\frac{-2\alpha K_a \alpha}{x^2 \alpha^2}$
- (B) $\frac{K_e q}{x a}$
- (C) zero
- $(D) \quad \frac{K_{\alpha}q}{x+a}$

The electric potential at point R on the +x axis. V_{R} =?

31. (A)
$$\frac{K_{s}q}{x-a}$$

(B)
$$\frac{-2aK_{g}}{x^2}$$

$$(D) \quad \frac{-2aK_{s}q}{x^{2}-a^{2}}$$

- If $x >> a \equiv V_R = 0$

The electric potential at point P on the +y axis. V_P=?

- (B)

$$\frac{1C}{1 \, Volt} = 7$$

- (A) 1 Farad
- (B) 1 Frequency
- 1 Fahrenheit
- (D) 1 Fourier

Find the equivalent capacitance between a and b

35. (A) $4\mu F$

$$C = \frac{k\epsilon_o A}{l}$$

 $8\mu F$

- - Coulombs' constant
- Dielectric constant
- Capacitance

- k=?(A) Charge density
- (B) Coulombs' constant
- (C) Dielectric constant
- (D) Capacitance

An air-filled capacitor consists of two parallel plates, each with an area of 7.6 cm² separated by a distance of 1.8mm. A → 20-V potential difference is applied to these plates. Calculate:

- the electric field between the plates
- (A) $11.11*10^3$ V/m
- (B) $9.82*10^{-8}$ V/m
- 8.8*10⁻¹²V/m
- 74v/m

- the surface charge density (A) $9.82*10^{-8}$ c/m²
 - $^{\circ}$ (B) 11.11*10³c/m²
- $74c/m^2$
- 8.8*10⁻¹²e/m²

- the capacitance
 - (A) 9.82*10⁻⁸PF
- 74PF
- 8.8*10⁻¹²PF
- (D) 11.11*10³PF

- the charge on each plate
- (A) 74PC

- 8.8*10⁻¹²PC
- 11.11*10³PC (C)
- (D)

A 50-m length of coaxial cable has an inner conductor that has a diameter of 2.58 mm and carries a charge of 8.1 µC. The surrounding conductor has an inner diameter of 7.27 mm and a charge of -8.1 µC. Assume the region between the conductors is air.

42. (A)
$$C = 2k_a \lambda \ln \left(\frac{b}{a}\right)$$

(B)
$$C = \frac{l}{2k_a \ln\left(\frac{b}{a}\right)}$$

$$(C) \quad c = \frac{k\epsilon_o A}{l}$$

$$(D) \quad c = 2k_a \ln \binom{b}{a}$$

What is the capacitance of this cable?

44. (A)
$$k \epsilon_{\alpha}$$

(B)
$$\Delta V = 2k_s \lambda \ln \left(\frac{b}{a}\right)$$

(C)
$$\Delta V = \frac{1}{2k_g \ln\left(\frac{b}{a}\right)}$$

(D)
$$AV = 2k_s \ln\left(\frac{b}{a}\right)$$

What is the potential difference between the two conductors?

$$(B) - 4.02V$$

(C)
$$3.02*10^3$$
V

(D)
$$4.02*10^3$$
V

A pendulum on Planet X, where the value of gravity is g. What will happen to the energy of this pendulum if:

46- Its mass is doubled?

A.-still the same

B, halved

C. doubled

D. none of the above

47- Its length is doubled?

A. still the same

B. halved

C. doubled

D. none of the above

48- Its oscillation amplitude is doubled?

A. still the same

B. halved

C. doubled

D. none of the above

49- A certain spring elongates 9mm when it is suspended vertically and a block of mass M is hung on it. The natural angular frequency of this block-spring system:

A. is 0.088 rad/s

B. is 33 rad/s

C. is 200 rad/s

D. cannot be computed unless the value of M is given

50-A weight suspended from an ideal spring oscillates up and down with a period T. If the amplitude of the oscillation is doubled, the period will be:

A. T

B. 2T

C. T/2

D. 1.5T

51-The standard 1kg mass is attached to a compressed spring and the spring is released. If the mass initially has an acceleration of 5.6m/s², the force of the spring has a magnitude of:

B. 5.6N

D. an undetermined amount

52-An object attached to one end of a spring makes 20 vibrations in 10 s. Its angular frequency is:

A. 0.79 rad/s

B. 1.57 rad/s

C. 2.0 rad/s

D. 12.6 rad/s

53-A large water tank, open at the top, has a small hole in the bottom. When the water level is 30m above the bottom of the tank, the speed of the water leaking from the hole:

A. is 2.5m/s

B. is 24m/s

C, cannot be calculated unless the area of the hole is given

D. cannot be calculated unless the areas of the hole and tank are given

54-Water (density = 1×10^3 kg/m³) flows through a horizontal tapered pipe. At the wide end its speed is 4m/s. The difference in pressure between the two ends is 4.5×10^3 Pa. The speed of the water at the narrow end is:

A. 2.6 m/s

B. 3.4m/s

C. 4m/s

55- Water flows through a cylindrical pipe of varying cross section. The velocity is 3m/s at a point where the pipe diameter is 1.0 cm. At a point where the pipe diameter is 3cm, the velocity is:

A.9 m/s

B. 3m/s

C. 1m/s

56-One end of a cylindrical pipe has a radius of 1.5 cm. Water (density = 1×10^3 kg/m³) streams steadily out at 7m/s. The rate at which mass is leaving the pipe is:

B. 4.9kg/s

C. 7kg/s

D. 48 kg/s

57-If a wheel is turning at 3 rad/s, the time it takes to complete one revolution is about:

A. 0.33 s

B. 0.67 s

C.1s

D. 2.1 s

		ar in					
J8-A wheel init	ially has an angular ve	elocity of 18 rad/s t	out it is slowi	ng at a rate of 2ra	d/s².		
By the time it st	ops it will have turned	l through:					
A. 81 rad	B. 160 rad		C. 245 ra	ıđ	D. 330 rad	li . ÷	
ans: A				and the oracle	1 0.1		
59-The figure sl	nows a cylinder of radi	ius 0.7m rotating a	bout its axis	at 10 rad/s. The s	peed of the		
point P is:		•			P/	*	*
A. 7m/s	B. 14 rad/s	C	C. 7rad/s	D. none of the	se /		1
	•			. "	. \	/	j
					`	< /	1 - 1
•							
60-Four identic	al particles, each wit	h mass m. are arr	anged in the	x, y plane as sl	hown. They are		· //
connected by li	ght sticks to form a r	igid body. If m =	2 kg and a =	Im, the rotation	al inertia of this	y .	
array about the		-8		•		*	
A. 4kg·m²	B. 12 kg · m ²	C. 1	9.6kg · m ²	D. none	of these	_	2
71. TKg 121	D. 12 ng					6	
						T I.	a , .
							•
•							
61 The dimensi	ons of a wooden raft	(deneity == 150 kg	/m ³) are 3m >	< 3 m × 1 m. What	t maximum load	• .	
Ol-tile difficilly	eawater (density = 102	(acasity 150 kg)	m) mo sm	Jan - India - India			
-	B. 7800 kg		C. 9200 kg		D. 19, 500 kg		
A. 1350 kg	neel has a rotational in	i artic of 12 kg . m²	Ar it turne t	brough Stev its a	noular velocity in	creases from	5rad/s to
			. As it tities t	111.00E(1.210.1.12.11	ingular volovovy in	01 000 00 11 0 11	
	et torque is constant its		C. 0.57N · m		D. 2.1N · m		
A. 0.016N · m	B. 0.18N · : ing in fresh water disp	III Noos 16 000N of	funter How	i many Newtons (it displace	if it floats
		places 10, 00011 of	. Water. Riow	Ameriy 100000010 C			
	specific gravity 1.17?		C. 16, 000		D. 284	•	•
A. 14, 500	B. 17, 600 rotational inertia of 6		o. 10, 000 tanà anambana	analomation of 2m	nd lot If it starts fro	om rest the v	work done
64-A disk has a	rotational mertia of 6	kg · m · and a cons	tant angular a	CCEleration of 21	acus, il it states iti	mi iest die v	YOIR GOLD
-	5.0 s by the net torque	acting on it is:	0.001		D. 300 J		
A. 0	B. 30 J		C. 60 J			in s/om³ is:	
	ooard floats in fresh w	ater with 60% of f	s volume uno	ier water. The de	more than 0.6	mg/cm is.	
A. 0.4	B. 0.6	C. le	ss than 0.4			ممائط مترانسة	lor which
66-The diagram	shows a U-tube with	cross-sectional ar	ea A and par	tiany filled with	on of density p. A	Soud Cyline	ici, winch
fits the tube ti	ightly but can slide	without friction,	is placed in	the right arm.	ine system is in	<u> </u>	.
equilibrium. Th	e weight of the cylind	er is:					. ,
					:		cyhoder
		a 4-a 13		D. none of th	3000		菜 .
A. ALρg	B. L'pg	C. Ap(L + h)	g	D. mone of a	resc		(A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B
					•		
45 Th	moderately low press	dit verith a dor	asitu of Q 5 Y	102 ka/m³ is use	d in place of merc	urv in a har	ometer. A
6/-10 measure	moderately low press	af Imm indicates	so change in:	nreccure of about			
	eight of the oil column	1 Of Hum moreages	ra change m p	C. 8.3Pa	D. 1.2Pa	1	
A. $1.2 \times 10^{-7} \text{P}$	a B. 1.2	$2 \times 10^{-5} \mathrm{Pa}$					forces are
o8-A certain w	vire stretches 0.9 cm	when outward for	ces with Has	summer are app	e the length The	second wire	stretches:
	re of the same material	i but with three tin	ies the diame	o o om	D, 2.7 cm	SOUTH WILL	ON PROTOR
A. 0.1 cm	B. 0.3	s cm	C, 	0.9 cm $64.7 \times 10^5 \text{ N/m}^2$	D, 2.7 GH.	cted to a rec	esure of ?
69-A cube with	2cm sides is made of	material with a bi	aik modulus (014./ × 10 N/M	. When it is subje	oten to a bre	.33LII Q OL 2
	ngth of its any of its sid			1.66	D	th ago	
A. 0.85 cm	B. 1.1			1.66 cm	D. none of	mese	
70- Bernoulli's	equation can be derive	ed from the conser	vation of:	_	~ .		
A energy	R mas		C. angul	ar momentum	D. volume	•	

71- A simple pendulu	m of length L and mass	M has frequency f. To increase it	t-fraguatou to 36	
A. increase its length	to 4L	in mo noducino, il 10 incicaso il	s nequency to 21.	
B. increase its length				
C. decrease its length		•		
D. decrease its lengtl		•		
72-A car travels éast a	t constant acceleration.	The net force on the car is:	•	
A. east	B. west	C. up	D. zero	
73- A radian is about:		•		
A. 25°	B. 37°	C. 45°	D. 57°	• •
74- The bulk modulus	is a proportionality con-	stant that relates the pressure acti	ng on an object to:	
A. the shear	·			
B. the fractional change	e in volume	•		
C. the fractional chang D. Young's modulus	ge in length			
-	iolisa mototina a ot 20 au 16			
Its angular acceleration	any rotainig at 20 rad/s	and has a constant angular accele	ration. After 9s it has rotated th	rough 450 rac
A. 3.3 rad/s		0.56		
	B. 4.4 rad/s	C. 5.6 rad		7 rad/s
function of disclarate	imple narmonic motion.	The potential energy, the kinetic	energy and total energy are mea	asured as a
		wing statements is true?	•	
a) Kinetic energy is ma				
b) Total energy is zero				
	aximum when x is maxii	mum	•	
d) Potential energy is n		•		
77- The rotational iner	tia of a wheel about its a	xle does not depend upon its:		
A. diameter	B. mass	C. distribution of mass		rotation
78- A 2kg block trave	els around a 0.5m radio	ıs circle with an angular veloci	y of 12 rad/s. The magnitude	of its angula
momentum about the c	enter of the circle is:			,
$A. 6 kg \cdot m^2/s$	B. $12 \text{ kg} \cdot \text{m}^2/\text{s}$	$C. 6 \text{ kg/m}^2. \text{ s}$	D. 72 kg . m^2/s^2	
79-All fluids are:			2017 - Ng 1 M110	•
A. gases	B. liquids	C. gases or liquids	D. non-metallic	. oʻ
80-The dimensions of		= 150 kg/m^3) are $3\text{m} \times 3\text{m} \times 1\text{m}$.	What mayimum load oon it oo	
(density / 1020 kg/m ³)?) .	The same of the sa	what maximum road can't can	iy ili seawale
A. 1350 kg	B. 7800 kg	C. 9200 kg	To 10500 I	•
_		akes 20 complete oscillations in 1	D. 19500 kg	
A. 2Hz	B. 10 s			
		C. 0.5Hz	D.0.50 s	
A. amplitude	D from an ar	rce must be proportional to the:		
~	B. frequency	C. velocity	D. displacemer	ıt
than the amplifude of th	nates on the end of the s	spring with a spring constant of 2	00N/m. If the system has an ene	agy of 6J,
then the amplitude of th				
A. 0.06m	B. 0.17m	C. 0.24m	D. 4.9m	
our ne amplitude of os	cillation of a simple pen	dulum is increased from 1± to 4±	. Its maximum acceleration cha	nges by a
ractor or:				
A. 1/4	B. 1/2	C. 2	D. 4	

For the following figure

85- The external work done by the force associated with the fluid pressure is

 $A. dW = P_1A_1dl_1$

B. $dW = -P_2A_2dI_2$

C. $dW_1 = P_1 A_1 dl_1 - P_2 A_2 dl_2$

D. none of the above

86- The change in the potential energy of this system is

A. $dU = \rho A_2 dl_2 g(y_2 - y_1)$

B. $dU = \rho A_2 dl_2 g y_2$

C. $dU = \rho P_1 A_1 dl_1 g$

D. none of the above

87- The change in the kinetic energy of this system is

A. $dk = \rho A_2 dl_2 g(y_2 - y_1)$

B. $dk = p A_2 dl_2 g y_2$

C. $dk = \rho y_1 A_1 dl_1 g$

D. none of the above

88- Which of the following represents viscosity?

A. Potential energy stored in fluid

B. Resistance to fluid motion

C. Roughness of the surface

D. The pressure difference between the two fluids

89- Water flows between two plates of which the upper one is stationary and the lower one is moving with a velocity V. What will be the velocity of the fluid in contact with the upper plate?

Á. V

B. N/2

C. 25

D.0

90- What happens to the viscosity of liquid with the increase in temperature?

A. It increases

B. It decreases

C. It may increase or decrease

D. No change

Assume any missing data.

Best Wishes

Dr. Ahmed Saeed

Dr. Demyana Adel

R