Kafrelsheikh University
Faculty of Engineering
Physics & Engineering Mathematics Dept.

Year: Preparatory year

Date: 1/6/2019

Time allowed: 3hours

Full mark: 110

Final Term Exam: 2page

Subject: Engineering Mathematics (2b)
(PHM0001)

All questions measure ILOs: a1,a5,b1,b2 and b7. Question 1: Complete each of the following sentences: (30 Marks) 1. If the axis are turned through an angle (tan-12), then the equation $4xy - 3x^2 = a^2$ becomes.... (a1,a5,b7)(6 Marks) 2. The equation of the tangent to the circle $x^2 + y^2 - 4y - 1 = 0$ at the point (2,1) is 3. For the ellipse whose equation is $4x^2 + 9y^2 - 48x + 72y + 144 = 0$, the coordinates of the vertices are, and the length of the latus rectum is..... (a1,a5.b5)(6 Marks) 4. The equation of the locus of a point that moves so that it always is equidistance from the line x = -2 and the fixed point (2,0) is (a1,a5,b5)(6 Marks) 5. To represent the equation $2x^2 + xy - y^2 - 11x - 5y + k = 0$ pair of lines, the Question 2: Put true ($\sqrt{}$) or false (\times) for each of the following sentences 1. The area of the triangle, whose vertices are (2,1),(5,-3) and (-8,0), is (43/4) units. (a1, b5)(5 Marks) 2. The length of the latus rectum for any ellipse is $(4b^4/a^2)^{1/2}$. (a5,b5)(5 Marks) 3. The center of the circle $r^2 - 3r\cos\theta - 3\sqrt{3}r\sin\theta - 16 = 0$ is $(\frac{3}{2}, \frac{3\sqrt{3}}{2})$. (a1, b5)(5 Mark) 4. The image of a point $p(1,\sqrt{3})$ by rotation around the origin point measured by angle $(\pi/3)$ is (0,2). (a5,b5)(5 Marks) 5. The equation $x^2 - y^2 = 4$ represents a circle. (a5,b5)(5 Marks)

باقى الاسئله بالورقة الثاثيه خلف الورقه

Kafrelsheikh University Faculty of Engineering

Physics & Engineering Mathematics Dept.

Year: Preparatory year

Date: 1/6/2019

Time allowed: 3hours

Full mark: 110

Final Term Exam: 2page

(PHM0001) Question 3: (25 Marks)

1. Evaluate the following integrals:

(a5,b7)(16 Marks)

a.
$$\int \frac{x^4 - 4}{x^3 - 3x^2 - x + 3} dx$$

a.
$$\int \frac{x^3 - 3x^2 - x + 3}{x^3 - 3x^2 - x + 3} dx$$

c.
$$\int \sqrt{\frac{x}{x-1}} dx$$

b.
$$\int e^{3x} \sqrt{1 - e^{2x}} dx$$

d.
$$\int \ln(1+\sin x)^{\sin 2x} dx$$

2. Derive the reduction formula for $\int \sin^n x \, dx$ and hence find $\int \sin^3 x \, dx$.

the curve $y = \ln(\sec x)$, between length of 3. Find x = 0 and $x = \pi/4$

(a5.b7) (4 Marks)

Question 4: (30 Marks)

1. Evaluate an approximate value for $\int_{-\infty}^{\infty} \frac{1}{x+1} dx$ using numerical integration, dividing the interval into 5 subintervals ($\underline{n=5}$) and deduce the value of the error.

(b1,b7)(6 Marks)

2. Evaluate the value of the integrals, if exist,

(a5,b1,b7)(12 Marks)

a.
$$\int_{-1}^{1} \frac{(\tan^{-1}x)^2 + \sin^3x}{(1+x^2)} dx$$

b.
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

3. Find the area between the two curves $y = x^2 - 3$ and y = |2x|.

(a5,b7) (6 Marks)

4. Find the volume of the solid generated by revolving about the Y-axis, the curve $\frac{x^2}{a^2} + \frac{y^2}{k^2} = 1$, in the first quadrant (الربع الأول) and then prove that the volume of the sphere of radius (a) is $(\frac{4}{2}\pi a^3)$. (a5,b7) (6 Marks)

With our best wishes

Prof. A.A. Elzaher Nasef nd Dr Samah El-Kholu