Kafrelsheikh University Faculty of Engineering **Electrical Engineering Dept.**

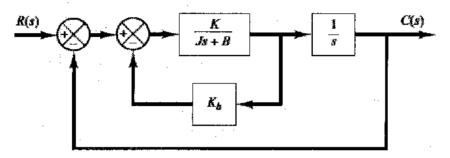
Final Exam

Total Marks: 70 Marks

Date: 15/03/2021

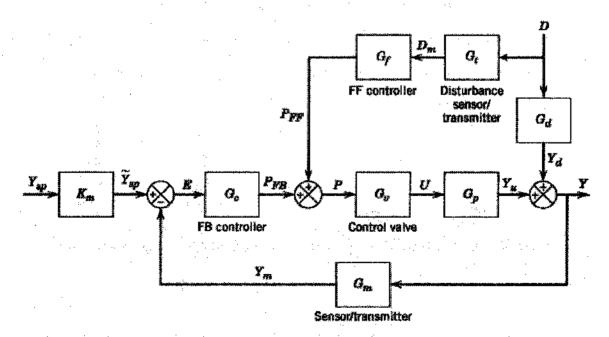
Time allowed: 3 Hours

Year: 4th Year


Subject Name: Industrial Control

Pages: 2

Course ILOS: a.1, a.4, a.5, a.10, a.11, b.1, b.2, b.3, b.11, b.13, c.1, c.2, c.3, c.4, c.7, d.6


Ouestion (1) [15 Marks]

For the servo system shown in the following figure, determine the values of gain K and velocity-feedback Constant K_h so that the maximum overshoot in the unit-step response is 0.15 and the peak time is 0.8 sec. With these values of K and K_h , obtain the rise time and settling time. Assume that J=1kg-m² and B=0.5 N-m/rad/sec.

Question (2) [20 Marks]

- A-) State the disadvantages of the feedforward controller. [5 Marks]
- B-) Obtain the feedforward controller transfer function of the following system: [10 Marks]

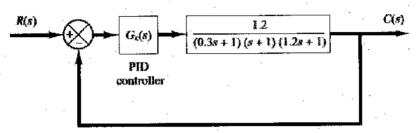
C-) Proof that the feedforward controller has no effect on the stability of the feedback control system. [5 Marks]

Kafrelsheikh University Faculty of Engineering Electrical Engineering Dept. Final Exam

Total Marks: 70 Marks

Date: 15/03/2021 Time allowed: 3 Hours

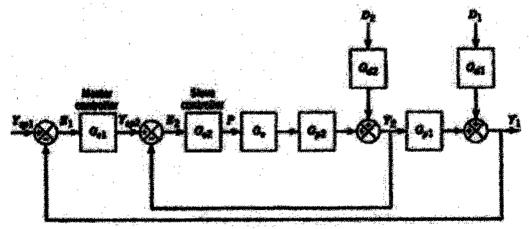
Year: 4th Year


Subject Name: Industrial Control

Pages: 2

Course ILOS: a.1, a.4, a.5, a.10, a.11, b.1, b.2, b.3, b.11, b.13, c.1, c.2, c.3, c.4, c.7, d.6

Ouestion (3) [20 Marks]


Apply a Ziegler-Nichols tuning rule for the determination of the values of parameters K_{p} , T_{i} , and T_{d} of the following figure:

Ouestion (4) [15 Marks]

For the block diagram of the following cascade loop:

- 1- Drive a single transfer function from input Y_{SP2} to output Y_2 , assuming $D_2=0$. [5 Marks]
- 2- Redraw the block diagram, replacing it now with your single block transfer function, but still incorporate the disturbance effect from D₂. [2 Marks]
- 3- What is the characteristic equation for the inner loop? [5 Marks]
- 4- If the inner loop has proportional-only controller for G_{c2} , and $G_{p2}(S) = \frac{6}{2S+1}$, and $G_V = 3$. Drive a constraint (inequality) for the value of critical gain, so that the inner loop still has stable behavior. [3 Marks]

With my best wishes

Dr. Sherif Emam Sherif (mam