

At equilibrium: rate _{forward} = rate _{reverse}

إعداد د/نور الهدى عبدالودود زيدان أستاذ مساعد بقسم كيمياء وسمية المبيدات كلية الزراعة – جامعة كفر الشيخ

بصفه عامه هناك نو عان من الأتز انات الكيميائيه :

و هو يشير إلى أن التفاعلات تحدث في طور واحد .

Homogeneous Equilibria: Reactants/Product all in a single phase.

Or

Homogenous equilibrium applies to reactions in which all reacting species **are in the same phase.**

وله قسمان:

أمثله:

 $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$

 $N2O_4(g) = 2NO_2(g).$

stant	con		(c)))	(b	(a)
	The NO ₂ -N ₂ O ₄ System at 25°C					
of tions rium	Ratio ncentra Equilit	Ra Conce at Ec	ibrium trations M)	Equil Concen (itial itrations M)	In Concer (
$\frac{(0_2)^2}{(0_4)}$	$ \begin{array}{c} 0_2 \\ \overline{D_4} \end{array} = \frac{[N]}{[N]} $	$\frac{[NO_2]}{[N_2O_4]}$	$[N_2O_4]$	[NO ₂]	$[N_2O_4]$	[NO ₂]
$5 imes 10^{-3}$	51 4.6	0.0851	0.643	0.0547	0.670	0.000
6 × 10 ⁻³	2 4.6	0.102	0.448	0.0457	0.446	0.0500
0×10^{-3}	67 4.6	0.0967	0.491	0.0475	0.500	0.0300
0×10^{-3}	30 4.6	0.0880	0.594	0.0523	0.600	0.0400
3×10^{-3}	7 4.6	0.227	0.0898	0.0204	0.000	0.200

ثابت الاتزان Kc وثابت الاتزان Kp والعلاقة بينهما.

يرمز لثابت الاتزان في تفاعلات المحاليل المائية بالرمز Kc حيث يعبر عن تركيز المواد بالمولارية [...]

$$NaCl(aq) + AgNO_3(aq) = AgCl(s) + NaNO_3(aq) i$$

كما يرمز لثابت الاتزان في تفاعلات الغازات بالرمز Kp حيث يعبر عن تركيز المواد بالضغط الجزئي P

$$N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$$

$$K_{p} = \frac{P_{NH_{3}}^{2}}{P_{N_{2}} \times P_{H_{2}}^{3}}$$

في معظم الحالات نجد إن:

In	n most cases
	$K_c \neq K_p$

$$Kp = Kc X RT^{(\Delta n)}$$
حيث (Δn) = عدد مولات النواتج - عدد مولات المواد المتفاعلة.

$$\Delta n$$
 = moles of gaseous products – moles of gaseous reactants
= $(c + d) - (a + b)$

Relationship between concentration and pressure obtained from the

ideal gas law.

Recall PV = nRT

$$\mathbf{a}\mathbf{A} (\mathbf{g}) + \mathbf{b}\mathbf{B} (\mathbf{g}) = \mathbf{c}\mathbf{C} (\mathbf{g}) + \mathbf{d}\mathbf{D} (\mathbf{g})$$

$$K_{P} = \frac{P_{C}^{c} P_{D}^{d}}{P_{A}^{a} P_{B}^{b}} = \frac{\left([C]RT\right)^{c} \left([D]RT\right)^{d}}{\left([A]RT\right)^{a} \left([B]RT\right)^{b}}$$

$$= \frac{\left[C\right]^{c} \left[D\right]^{d} \left(RT\right)^{c+d}}{\left[A\right]^{a} \left[B\right]^{b} \left(RT\right)^{a+b}}$$

$$K_{P} = K_{c} \left(RT\right)^{(c+d)-(a+b)} = K_{c} \left(RT\right)^{\Delta n}$$

ولنأخذ مثالاً فعلياً ونطبق عليه هذا الكلام ولتكن المعادله الأتيه :

$$N_{2}(g) + 3H_{2}(g) \Leftrightarrow 2NH_{3}(g)$$
$$PV = nRT$$
$$\therefore P = \frac{n}{V}RT$$
$$\therefore P = [Gas]RT$$

$$N_{2}(g) + 3H_{2}(g) \Leftrightarrow 2NH_{3}(g)$$
$$K_{c} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}} \text{ OR } K_{p} = \frac{P_{NH_{3}}^{2}}{P_{N_{2}} \bullet P_{H_{2}}^{3}}$$

$$Kp = \frac{P_{NH_3}^2}{P_{N_2} \bullet P_{H_2}^3} = \frac{[NH_3]^2 (RT)^2}{[N_2] (RT) \bullet [H_2]^3 (RT)^3} = \frac{[NH_3]^2}{[N_2] [H_2]^3} \bullet (RT)^{-2}$$
$$Kp = K_c (RT)^{\Delta ng}$$

أكتب معادلة ثابت الأتزان لكل من التفاعلات الأتيه :

$$2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)}$$

$$K_{p} = \frac{P_{SO_{3}}^{2}}{P_{SO_{2}}^{2} \times P_{O_{2}}}$$

$$N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}$$

$$K_{p} = \frac{P_{NH_{3}}^{2}}{P_{N_{2}} \times P_{H_{2}}^{3}}$$
$$N_{2}O_{4}(g) = 2NO_{2}(g).$$

$$\mathcal{K}_{c} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]} \qquad \qquad \mathcal{K}_{p} = \frac{P_{NO_{2}}^{2}}{P_{N_{2}O_{4}}}$$

في عمليه هابر لتحضير الامونيا يكون كل من المواد المتفاعله والناتجه من التفاعل غازي

$$K = \underline{[3.1x10^{-2} \text{ mol/L}]^2}_{[8.5x10^{-1} \text{mol/L}][3.1x10^{-3} \text{mol/L}]^3}$$

 $= 3.8 \times 10^4 (mol/L)^{-2}$

ماذا يحدث إذا عكسنا التفاعل؟

What happens if we reverse the reaction?

$$2NH_3 \rightarrow N_2 + 3H_2$$

K' = ?

$$\begin{array}{l} \mathrm{K}^{*}=\underline{[\mathrm{N}_{\underline{2}}][\mathrm{H}_{\underline{2}}]^{3}}\\ [\mathrm{N}\mathrm{H}_{2}]^{2} \end{array}$$

= 1/K

$$= \frac{1}{3.8 \times 10^4 \, (\text{mol/L})^{-2}}$$

$$= 2.6 \times 10^{-6} (mol/L)^2$$

مثال:

 $CH_{3}COOH (aq) + H_{2}O (l) \longrightarrow CH_{3}COO^{-} (aq) + H_{3}O^{+} (aq)$

$$\mathcal{K}_{c}^{4} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH][H_{2}O]} \qquad [H_{2}O] = \text{constant}$$
$$\mathcal{K}_{c} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]} = \mathcal{K}_{c}^{4} [H_{2}O]$$

و هو يشير إلى أن التفاعلات تحدث في أكثر من طور ، بمعنى وجود ماده صلبه أو أكثر بالإضافه إلى الطور السائل أو الغاز.

Heterogeneous Equilibria: Reactants/Product in more than one phase.

ملاحظة : المواد ذات التركيز الثابت (السوائل النقية والمواد الصلبة) لا تكتب في قانون الاتزان.

The concentration of **solids** and **pure liquids** are not included in the expression for the equilibrium constant.

مثال أخر :

$$2NaHCO_{3}(s) \Leftrightarrow Na_{2}CO_{3}(s) + H_{2}O(g) + CO_{2}(g)$$

(in a sealed container)
$$K = \frac{[CO_{2}][H_{2}O][Na_{2}CO_{3}]}{[NaHCO_{3}]^{2}}$$

BUT: for any pure liquid of solid, the ratio of the amount of substance to the volume of substance is a constant

for example : $NaHCO_3 \frac{1 mol}{0.0389L} = \frac{2mol}{0.0778L} = 25.7 mol/L$

therefore

$$\begin{bmatrix} CO_2 \end{bmatrix} \begin{bmatrix} H_2O \end{bmatrix} = \frac{K \begin{bmatrix} NaHCO_3 \end{bmatrix}^2}{\begin{bmatrix} Na_2CO_3 \end{bmatrix}} = K_C$$

إذن في حالة الأنظمه غير المتجانسه لا تعتمد على كميات المواد النقيه الصلبه أو السائله الموجوده . (أنظر الشكل التالي) :

أكتب معادلة ثابت الأتزان لكل من التفاعلات الأتيه :

$2H_{2(g)} + O_{2(g)} = 2H_2O_{(l)}$	$\mathbf{Kc} = [\mathbf{H}_2]^2 [\mathbf{O}_2]$
$Na_{(aq)}^{+1} + Cl_{(aq)}^{-1} = NaCl_{(s)} + H_2O_{(l)}$	$\mathbf{K}\mathbf{c} = [\mathbf{N}\mathbf{a}^{+1}][\mathbf{C}\mathbf{\Gamma}^{-1}]$
$\mathbf{CO}_{2(g)} = \mathbf{C}_{(s)} + \mathbf{O}_{2(g)}$	$\mathbf{Kc} = [\mathbf{CO}_2]/[\mathbf{O}_2]$
$H_2(g) + CO(g) = H_2O(g) + C(g)$	$\mathbf{K}_{\mathbf{C}} = \frac{[\mathbf{H}_2] \ [\mathbf{CO}]}{[\mathbf{H}_2\mathbf{O}]}$
Cu $(aq)^{2+}$ + 2Ag (s) Cu (s) +2Ag ⁺ (aq)	$\mathbf{K}_{\mathbf{C}} = \frac{[\mathbf{C}\mathbf{u}^{2+}]}{[\mathbf{A}\mathbf{g}^{+}]^{2}}$
$CaO(g) + CO2(g) = CaCO_3(g)$	$K_c = [CO_2]$

• أكتب ثوابت الأتزان $\mathrm{K}_{\mathrm{p}}\,,~\mathrm{K}_{\mathrm{c}}$ لكل من التفاعلات الأتيه $\,\cdot\,$

 $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$

2HI (g) $\stackrel{\longrightarrow}{\longleftarrow}$ H₂ (g) +I₂ (g)

$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$

K _c	K_{p}
$K_{c} = \frac{[\mathrm{NH}_{3}]^{2}}{[\mathrm{N}_{2}][\mathrm{H}_{2}]^{3}}$	$K_{p} = rac{p_{ m NH_{3}}^{2}}{p_{ m N_{2}}p_{ m H_{2}}^{3}}$
$K_{c} = \frac{[\mathrm{H}_{2}][\mathrm{I}_{2}]}{[\mathrm{HI}]^{2}}$	$K_{p} = rac{p_{ m H_{2}} p_{ m I_{2}}}{p_{ m HI}^{2}}$
$K_{c} = \frac{[SO_{3}]^{2}}{[SO_{2}]^{2}[O_{2}]}$	$K_{p} = \frac{p_{\rm SO_{3}}^{2}}{p_{\rm SO_{2}}^{2} p_{\rm O_{2}}}$

الحل

في التفاعل الأتى :

$$CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$$

Carbon monoxide [CO] = 0.012 M Molecular chlorine [Cl₂] = 0.054 M [COCl₂] = 0.14 M

أحسب ثوابت الأتزان
$$\mathrm{K}_{\mathrm{p}}$$
 ?

الحل

$$K_{c} = \frac{[\text{COCI}_{2}]}{[\text{CO}][\text{CI}_{2}]} = \frac{0.14}{0.012 \times 0.054} = 220$$
$$K_{p} = K_{c}(RT)^{4n}$$
$$\Delta n = 1 - 2 = -1 \qquad R = 0.0821 \qquad T = 273 + 74 = 347 \text{ K}$$
$$K_{p} = 220 \times (0.0821 \times 347)^{-1} = 7.7$$

وجد أن ثابت الأتزان للتفاعل الأتى :

 $2NO_{2}(g) \implies 2NO(g) + O_{2}(g)$

the equilibrium pressure of) O_2 هو ۱۰۰ عند درجة ۱۰۰۰ كلفن فماهوضغط الأتزان لـ O_2 (O_2 عند درجة ۱۰۰۰ كلفن فماهوضغط الأتزان لـ $P_{NO2} = 0.400$ atm , $P_{NO} = 0.270$ atm) إذا علم أن (O_2

الحل

$$K_{p} = \frac{P_{NO}^{2} P_{O_{2}}}{P_{NO_{2}}^{2}}$$
$$P_{O_{2}} = K_{p} \frac{P_{NO_{2}}^{2}}{P_{NO}^{2}}$$

 $P_{\rm O_2} = 158 \text{ x} (0.400)^2 / (0.270)^2 = 347 \text{ atm}$

في التفاعل التالي :

$NH_4HS(s) \longrightarrow NH_3(g) + H_2S(g)$

. 0.265 atm لهذا التفاعل إذاعلم أن الضغط الجزئي لكلا الغازين هو $K_{
m c}$, $K_{
m p}$

المحل $K_p = P_{\rm NH_3}P_{\rm H_2S} = 0.265 \times 0.265 = 0.0702$ $K_p = K_c (RT)^{\Delta n}$ $K_c = K_p (RT)^{-\Delta n}$ $\Delta n = 2 - 0 = 2$ $T = 295 \,\rm K$

 $K_c = 0.702 \text{ x} (0.0821 \text{ x} 295)^{-2} = 1.20 \text{ x} 10^{-3}$

يستخدم مهندسي الوقود مدى التغير من CO و H₂O إلى CO و H₂ لتنظيم نسب مخلوط
 يستخدم مهندسي الوقود مدى التغير من CO و CO مول من H₂O مول من H₂O فى
 الوقود التركيبي فإذا وضع 0.250 mol مول من CO و CO مول من H₂O مول من H₂O فى
 دورق سعته 125-mL درجة حراره 300K، فماهو تركيب المخلوط عند الأتزان عند نفس
 درجة الحراره علماً بأن قيمة Kc هى 1.56 لهذا التفاعل .

$$CO(g) + H_2O(g)$$
 \implies $CO_2(g) + H_2(g)$

الحل كل التركيزات يجب أن تكون بالمول (M) لذلك

$$[CO] = [H_2O] = 0.250/0.125L = 2$$

concentration	CO(g) +	$H_2O(g) =$	\blacktriangleright CO ₂ (g)	+ $H_2(g)$
initial	2.00	2.00	0	0
change	- <i>X</i>	-X	+ <i>X</i>	+ <i>X</i>
equilibrium	2.00- <i>x</i>	2.00- <i>x</i>	X	x

$$K_{c} = \frac{[CO_{2}][H_{2}]}{[CO][H_{2}O]} = \frac{(x)(x)}{(2.00-x)(2.00-x)} = \frac{(x)^{2}}{(2.00-x)^{2}}$$

$$\sqrt{1.56} = \frac{x}{2.00-x} = \pm -1.25$$

$$x = 1.11M \qquad [CO_{2}] = [H_{2}] = 1.11M$$

$$2.00 - x = 0.89M$$

• عند 12800C يكون ثابت الأتزان (Kc) للتفاعل التالى :

$$\operatorname{Br}_2(g) \Longrightarrow 2\operatorname{Br}(g)$$

الحل

Let x be the change in concentration of Br2

نعتبر أن التغيرفي تركيز Br2 هو x

$$Br_{2}(g) \rightleftharpoons 2Br(g)$$

$$Iritial(M) \qquad 0.063 \qquad 0.012$$

$$Change(M) \qquad -x \qquad +2x$$

$$Equilibrium(M) \qquad 0.063 - x \qquad 0.012 + 2x$$

$$K_{c} = \frac{[Br]^{2}}{[Br_{2}]} \qquad K_{c} = \frac{(0.012 + 2x)^{2}}{0.063 - x} = 1.1 \times 10^{-3} \qquad \text{Solve for } x$$

$$K_{c} = \frac{(0.012 + 2x)^{2}}{0.063 - x} = 1.1 \times 10^{-3}$$

$$4x^{2} + 0.048x + 0.000144 = 0.0000693 - 0.0011x$$

$$4x^{2} + 0.0491x + 0.0000747 = 0$$

$$ax^{2} + bx + c = 0 \qquad x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = -0.0105 \quad x = -0.00178$$
Br₂(g) $\rightarrow 2Br$ (g)
Initial (M) 0.063 0.012
Change (M) -x +2x
Equilibrium (M) 0.063 - x 0.012 + 2x

At equilibrium, [Br] = 0.012 + 2x = -0.009 M or 0.00844 MAt equilibrium, $[Br_2] = 0.062 - x = 0.0648 M$

(a)
$$\operatorname{CaO}(s) + \operatorname{H}_2\operatorname{O}(l)$$
 \checkmark $\operatorname{Ca(OH)}_2(aq) \Delta H^0 = -82kJ$

(b)
$$\operatorname{CaCO}_3(s)$$
 \checkmark $\operatorname{CaO}(s) + \operatorname{CO}_2(g) \Delta H^0 = 178 \text{kJ}$

(c)
$$SO_2(g) \implies S(s) + O_2(g) \Delta H^0 = 297 kJ$$

Ited

(a) $CaO(s) + H_2O(l) \implies Ca(OH)_2(aq) + heat$

(b) $CaCO3(s) + heat \implies CaO(s) + CO_2(g)$

التفاعل سوف يتجه ألى اليمين نتيجة الأرتفاع في [CO2] و الأرتفاع في Kc .

(c) $SO_2(g) + heat \implies S(s) + O_2(g)$

التفاعل سوف يتجه ألى اليمين نتيجة الأرتفاع في [SO2] و الأرتفاع في Kc .

- ما هو التغير الذي يحدث في الحجم لكل من التفاعلات الأتيه لكي نزيد من محصول النواتج
 ?
- (a) CaCO3(s) \checkmark $CaO(s) + CO_2(g)$
- **(b)** $S(s) + 3F_2(g)$ \implies $SF_6(g)$

(c)
$$\operatorname{Cl}_{2}(g) + \operatorname{I}_{2}(g) \implies 2_{\mathrm{I}}\operatorname{Cl}(g)$$

الحل

عندما تتواجد الغازات فإن التغير في حجمها سوف يؤثر على تركيز ها ، بصفه عامه عندما يتخفض الحجم (يزداد الضغط) ،فإن التفاعل سوف يتجه إلى الجهه التي بها عدد مولات أقل والعكس صحيح vice versa .

(a)
$$CaCO3(s)$$
 \leftarrow $CaO(s) + CO_2(g)$

CO2 هو الغاز الوحيد الموجود ولزيادة محصوله ، سوف نزيد الحجم (نخفض الضغط)

(b)
$$S(s) + 3F_2(g)$$
 \implies $SF_6(g)$

نجد أن عدد المولات الغازيه للمتفاعلات أكبر من عدد المولات الغازيه للنواتج ، لذلك سوف نخفض الحجم (نزيد الضغط) كي يتغير اتجاه التفاعل لليمين .

(c)
$$Cl_2(g) + I_2(g)$$

 $2ICl(g)$

فى هذه المعادله يتساوى عدد مولات الغازات على جانبي المعادله ، لذلك فإن التغير في الحجم لا يؤثر .

 لتحسين نوعية الهواء والحصول على منتج مفيد ، يتم غالباً إز الة الكبريت من الفحم والغاز الطبيع عن طريق معاملة كبريتيد الهيدر وجين الملوث للوقود بواسطة الأكسجين كما فى التفاعل التالى :

$$_{2}$$
H2S (g) + O₂ (g) \implies 2S(s) + 2H₂O (g)

ماذا يحدث لـ :

- O_2 إذا إضيف [H₂O]
 - O_2 اإذا إضيف [H₂S] •
- H₂S إذا أز لنا
- [H₂S] إذا إضيف S

الحل

عندما يختل النظام نرى أولاً المعادله الخاصه Q ونقارنها ب K لنعرف إلى أين سيتجه التفاعل

$$Q = \frac{[H_2O]^2}{[H_2S]^2[O_2]}$$

• [H2O] إذا إضيف H2O]

عند إضافة O2، قإن قيمة Q تنخفض ويتجه التفاعل ناحية اليمين لكي يرجع لل K ، لذلك يرتفع تركيز<u>H</u>2O .

• [H2S] إذا إضيف (H2S]

عند إضافة O2، قإن قيمة Q تنخفض ويتجه التفاعل ناحية اليمين لكي يرجع لل K ، لذلك ينخفض تركيز H₂S .

[O₂] إذا أزلنا H₂S:
 عند إز اله H₂S، قإن قيمة Q ترتفع ويتجه التفاعل ناحية اليسار لكى يرجع لل K ، لذلك ينخفض تركيز<u>Q</u>.

[H2S] إذا إضيف S:
 الكبريت ليس جزء من معادلة حساب (K) Q لأنه صلب ، لذلك طالما بعض الكبريت موجود فان التفاعل لايتأثر ، H2S لايتأثر.

 $2 \operatorname{NOCl}(g) \implies 2 \operatorname{NO}(g) + \operatorname{Cl}2(g)$

فى التفاعل السابق تم وضع 2.00 mol من NOCl فى دورق سعته 1.00 L.
 الأتزان وجد 0.66 mol/L ، أحسب قيمة K.

	[NOCI]	[NO]	[Cl2]
Before	2.00	0	0
Change			
Equilibrium	0.66		
	[NOCI]	[NO]	[Cl2]
Before	2.00	0	0
Change	-0.66	+0.66	+0.33
Equilibrium	1.34	0.66	0.33

فى التفاعل:

 $H_2(g) + I_2(g) \implies 2 HI(g), Kc = 55.3$

الحل

وضع 1.00 mol من كل من $I_2 + 1.00 \text{ L}$ في دورق سعته 1.00 L أحسب تركيز كل من H_2 and I_2

			الحل	
		K _c =	[HI] ² [H ₂][I ₂] =	= 55.3
	[H2]	[I2]	[HI]	
Initial	1.00	1.00	0	
Change				
Equilib				
	[H2]	[I2]	[HI]	
Initial	1.00	1.00	0	
Change	-X	-X	+2x	
Equilib	1.00-x	1.00- x	2x	

Where x is defined as am't of H2 and I2 consumed on approaching equilibrium

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} = 55.3$$

$$K_{c} = \frac{[2x]^{2}}{[1.00 - x][1.00 - x]} = 55.3$$

$$7.44 = \frac{2x}{1.00 - x}$$

x = 0.79 Therefore, at equilibrium $[H_2] = [I_2] = 1.00 - x = 0.21 M$ [HI] = 2x = 1.58 M

في التفاعل:

إذاكان التركيز الأولى ل N2O4 هو 0.50 M ، فما هى التركيز ات عند الأتزان ؟

		الحل	
	[N2O4]	[NO2]	
Initial	0.50	0	
Change			
Equilib			
	[N2O4]	[NO2]	
Initial	0.50	0	
Change	-X	+2x	
Equilib	0.50 - x	2x	

$$K_{c} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]} = 0.0059 \text{ at } 298 \text{ K}$$

Rearrange:

 $0.0059 (0.50 - x) = 4x_2$ $0.0029 - 0.0059x = 4x_2$ $4x_2 + 0.0059x - 0.0029 = 0$

This is a QUADRATIC EQUATION

$$ax2 + bx + c = 0$$

 $a = 4 \ b = 0.0059 \ c = -0.0029$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-0.0059 \pm \sqrt{(0.0059)^2 - 4(4)(-0.0029)}}{2(4)}$$

 $x = -0.00074 \pm 1/8(0.046)^{1/2} = -0.00074 \pm 0.027$

x = 0.026 or -0.028 But a negative value is not reasonable.

Conclusion $[N_2O_4] = 0.050 - x = 0.47 M$ $[NO_2] = 2x = 0.052 M$

أسئله

- احسب قيمة ثابت الاتزان لتفاعل غاز الهيدروجين مع بخار اليود لانتاج غاز يوديد HI = HI: الهيدروجين عند ٤٩٠ درجة مئوية إذا علمت أن تركيز المواد عند الاتزان كالتالي = HI : $I_2 = 0.0862$, $I_2 = 0.263$
 - إذا علمت أن الضغط الجزئي عند الاتزان في التفاعل التالي:
 PCl₅ = pcl₃ + Cl₂
 هي PCl5 = 0.463 atm : PCl5 = 0.875 atm , PCl3 = 0.463 atm
 درجة مئوبة.
- في التفاعل التالي $NH4HS = NH_4 HS = NH_3 + H_2S$ وضعت عينة من NH4HS الصلب في وعاء عند ٢٥ درجة مئوي احسب الضغط الجزئي لكل غاز عند الاتزان و احسب الضغط الكلي للغازات اذا علمت أن $K_P = 0.108$ عند ٢٥ درجة مئوي .
- اذا علمت أن ثابت الاتزان للتفاعل التالي : $^{N} \cdot \times 7.7 \times N_2 + 3H_2 = 2NH_3$ يساوي $N_2 + 3H_2 = 2NH_3$ فما قيمة ثابت الاتزان للتفاعل 2H2 + 3/2 H2 عند درجة الحرارة نفسها ؟
 - د دمن المناب الاتفاعل $KC = N_2 + 3H_2 = 2NH_3$ علماً بأن ثابت الاتزان KC الحسب قيمة KC درجة مئوي يساوي $N_2 + 3H_2 = 2NH_3$ درجة مئوي يساوي $N_2 + 3H_2 = 2NH_3$
 - عند درجة حرارة عالية جداً كانت قيمة ثابت الاتزان للتفاعل التالي $HI = H_2 + I_2$: فإذا تم خلط ٥. • مولار من HI ، 2.8 مولار من H₂ و ٣.٤ مولار من I₂ فهل يحدث تغير في تراكيز المواد (هل وصل التفاعل إلى حالة الاتزان) ؟ في أي اتجاه يحدث التفاعل.

- إذا ادخل ٢ مول من يوديد الهيدروجين في وعاء حجمه واحد لتر عند490 درجة مئوية ، كم يكون تركيزكل نوع من المواد الموجودة في الوعاء عند الاتزان علماً بأن ثابت الاتزان للتفاعل يساوي ٤٥.٩ عند ٤٩٠ درجة مئوية ؟
 - في التفاعل التالي $O_2 = 2SO_2 + O_2$: إذا وضع في إناء سعته ١.٥ لتر كمية مقدر اها ٢.٥ مول من SO_3 ووجد عند الاتزان أن نسبة المتفكك من SO3 هو ٢٨% احسب قيمة ثابت الاتزان. K_c
- في التفاعل التالي 20 + 2SO₃ = 2SO₂ + O₂ :
 إذا وضع في إناء سعته ٥٢. التر كمية مقدار ها ٢٠. مول من SO₃ ووجد عند الاتزان
 كمية متبقية من SO₃ تساوي ١٤٢. مول احسب قيمة K_C و K_C للتفاعل عند ٩٠٠ درجة
 مطلقة

