تايو الأنخاد الحيمليانكه Chemical Equilibrium

At equilibrium: \quad rate $_{\text {forward }}=$ rate $_{\text {reverse }}$

إعداد

د/نور الهـى عبدالودود زيدان
أستاذ مسـاعد بقسم كيمياء وسمية (لمبيدات
كلية الزراعة - جامعة كفر الثيخ

أنواع الأتزانات الكيميائيه

بصفه عامه هنالك نو عان من الأتز انات الكيمبائيه :

و هو يشبر إلى أن التفاعالت تحدث فى طور واحد .

Homogeneous Equilibria: Reactants/Product all in a single phase.
Or
Homogenous equilibrium applies to reactions in which all reacting species are in the same phase.

وله قسمان:

أمثله :
$2 \mathrm{HI}(\mathrm{g}) \rightleftarrows \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \mathbf{2} \mathrm{NO}_{2}(\mathrm{~g})$.

${ }^{\text {(2) }}$			${ }^{(9)}$	constant	
	The $\mathbf{N O}_{\mathbf{2}} \mathbf{-} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}}$ System at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$				
Conc	ial rations)	Equilibrium Concentrations (M)		Ratio of Concentrations at Equilibrium	
$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\frac{\left[\mathrm{NO}_{2}\right]}{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}$	$\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}$
0.000	0.670	0.0547	0.643	0.0851	4.65×10^{-3}
0.0500	0.446	0.0457	0.448	0.102	4.66×10^{-3}
0.0300	0.500	0.0475	0.491	0.0967	4.60×10^{-3}
0.0400	0.600	0.0523	0.594	0.0880	4.60×10^{-3}
0.200	0.000	0.0204	0.0898	0.227	4.63×10^{-3}

ثابت الاتزان Kc وثابت الاتزان Kp و العلاقة بينهما.

يرمز لثابت الاتزان في تفاعلات المحاليل المائية بالرمز Kc حيث يعبر عن تركيز المواد بالمولارية
$\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq})=\mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}(\mathrm{aq}) \mathrm{i}$

كما يرمز لثابت الاتزان في تفاعلات الغاز ات بالرمز Kp حيث يعبر عن تركيز المواد بالضغط الجزئي
$\mathrm{N}_{2}(0)+3 \mathrm{H}_{2}(0) \Longrightarrow 2 \mathrm{NH}_{3}(0)$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{NH}_{3}}{ }^{2}}{\mathrm{P}_{\mathrm{N}_{2}} \times \mathrm{P}_{\mathrm{H}_{2}}{ }^{3}}
$$

فى معظم الحالات نجد إن:

$$
\begin{gathered}
\text { In most cases } \\
K_{c} \neq K_{D}
\end{gathered}
$$

والقانون التالي يوضح العلاقة بينهما:
$\mathrm{Kp}=\mathrm{KcXRT}^{(\mathrm{nn})}$
حيث (n) = عدد مو لات النواتج - عدد مولات المو اد المتفاعلة.
$\Delta \mathrm{n}=$ moles of gaseous products - moles of gaseous reactants

$$
=(c+d)-(a+b)
$$

ولكن ترى عزيزى الطالب من أين جاءت هذه العلاقه ؟

Relationship between concentration and pressure obtained from the ideal gas law.

Recall PV = nRT

$$
\begin{aligned}
\mathbf{a A}(\mathbf{g})+\mathbf{b B}(\mathbf{g}) & \mathbf{c C}(\mathbf{g})+\mathbf{d D}(\mathbf{g}) \\
K_{P} & =\frac{\boldsymbol{P}_{C}^{c} \boldsymbol{P}_{D}^{d}}{P_{A}^{a} P_{B}^{b}}=\frac{([C] R T)^{c}([D] R T)^{d}}{([A] R T)^{a}([B] R T)^{b}} \\
& =\frac{[C]^{c}[D]^{d}(R T)^{c+d}}{[A]^{a}[B]^{b}(R T)^{a+b}} \\
K_{P} & =K_{c}(R T)^{(c+d)-(a+b)}=K_{c}(R T)^{\Delta n}
\end{aligned}
$$

ولنأخذ مثالاً فعلياً ونطبق عليه هذا الكلام ولتكن المعادله الأتيه :

$$
\begin{aligned}
& N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g) \\
& P V=n R T \\
& \therefore P=\frac{n}{V} R T \\
& \therefore P=[G a s] R T
\end{aligned}
$$

$$
\begin{gathered}
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N_{3}(g) \\
K_{c}=\frac{\left[N H_{3}\right]^{2}}{\left[N_{2}\right]\left[H_{2}\right]^{3}} \text { OR } K_{p}=\frac{P_{N H_{3}}^{2}}{P_{N_{2}} \bullet P_{H_{2}}^{3}} \\
K p=\frac{P_{N H_{3}}^{2}}{P_{N_{2}} \bullet P_{H_{2}}^{3}}=\frac{\left[N H_{3}\right]^{2}(R T)^{2}}{\left[N_{2}\right](\mathrm{RT}) \bullet\left[H_{2}\right]^{3}(R T)^{3}}=\frac{\left[N H_{3}\right]^{2}}{\left[N_{2}\right]\left[H_{2}\right]^{3}} \bullet(R T)^{-2} \\
K p=K_{c}(R T)^{\Delta n g}
\end{gathered}
$$

أكتب معادلة ثابت الأتزان لكل من التفاعلات الأتيه :
$2 \mathrm{SO}_{2[g]}+\mathrm{O}_{2[g]} \rightleftharpoons 2 \mathrm{SO}_{3[g]}$
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{SO}_{3}}{ }^{2}}{\mathrm{P}_{\mathrm{SO}_{2}}{ }^{2} \times \mathrm{P}_{\mathrm{O}_{2}}}$
$\mathrm{N}_{2(g)}+\mathrm{ZH}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{NH}_{3}}{ }^{2}}{\mathrm{P}_{\mathrm{N}_{2}} \times \mathrm{P}_{\mathrm{H}_{2}}{ }^{3}} \\
& \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})=2 \mathrm{NO}_{2}(\mathrm{~g}) . \\
& K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} \quad K_{p}=\frac{P_{\mathrm{NO}_{2}}^{2}}{\mathrm{~N}_{2} \mathrm{O}_{4}}
\end{aligned}
$$

من أهم التطبيقات علي الاتزان الغازي :

في عمله هابر لتحضير الامونيا يكون كل من المو اد المتفاعله والناتجه من التفاعل غازي

Haber Process:
$\mathrm{N}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{NH}_{3}$
Balance:

$$
\begin{aligned}
& \mathrm{K}=\frac{\left[3.1 \times 10^{-2}{\mathrm{~mol} / \mathrm{L}]^{2}}_{\left[8.5 \times 10^{-1} \mathrm{~mol} / \mathrm{L}\right]\left[3.1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right]^{3}}\right.}{} \\
&=3.8 \times 10^{4}(\mathrm{~mol} / \mathrm{L})^{-2}
\end{aligned}
$$

ماذا يحدث إذا عكسنا التفاعل؟
What happens if we reverse the reaction?

$$
2 \mathrm{NH}_{3} \longleftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}
$$

$$
K^{\prime}=?
$$

$$
\begin{aligned}
\mathrm{K}^{\prime} & =\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{NH}_{2}\right]^{2}} \\
& =1 / \mathrm{K} \\
& =\frac{1}{3.8 \times 1 \mathrm{O}^{4}(\mathrm{~mol} / \mathrm{L})^{-2}} \\
& =2.6 \times 10^{-6}(\mathrm{~mol} / \mathrm{L})^{2}
\end{aligned}
$$

$\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$

$$
K_{c}^{\circ}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]} \quad\left[\mathrm{H}_{2} \mathrm{O}\right]=\text { constant }
$$

$$
K_{c}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=K_{c}^{6}\left[\mathrm{H}_{2} \mathrm{O}\right]
$$

Heterogeneous Equilibrium الأتزان فى الأنظمه غير المتجانسه

وهو يشبر إلى أن التفاعلات تحدث فى أكثرمن طور ، بمعنى وجود ماده صلبه أو أكثر بالإضـافه إلى الطور السائل أو الغاز.

Heterogeneous Equilibria: Reactants/Product in more than one phase.

$$
\begin{aligned}
& \text { مثال : م } \\
& \mathrm{CaCO}_{3}(s) \rightleftarrows \mathrm{CaO}\left((s)+\mathrm{CO}_{2}(g)\right. \\
& K_{c}^{c}=\frac{[\mathrm{CaO}]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CaCO}_{3}\right]} \\
& {\left[\mathrm{CaCO}_{3}\right]=\text { constant }} \\
& \text { [CaO] = constant } \\
& K_{c}=\left[\mathrm{CO}_{2}\right]=K_{c}^{c} \times \frac{\left[\mathrm{CaCO}_{3}\right]}{[\mathrm{CaO}]} \\
& K_{p}=P_{\mathrm{CO}_{2}}
\end{aligned}
$$

ملاحظة : المواد ذات التركيز الثابت (السوائل النقية والمواد الصلبة) لا تكتب في قانون الاتزان.

The concentration of solids and pure liquids are not included in the expression for the equilibrium constant.

$$
\begin{aligned}
2 \mathrm{NaHCO}_{3}(s) & \Leftrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}_{2}(g) \\
& \text { (in a sealed container) } \\
K= & \frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{NaHCO}_{3}\right]^{2}}
\end{aligned}
$$

BUT : for any pure liquid of solid, the ratio of the amount of substanct to the volume of substance is a constant

$$
\text { for example : } \mathrm{NaHCO}_{3} \frac{1 \mathrm{~mol}}{0.0389 \mathrm{~L}}=\frac{2 \mathrm{~mol}}{0.0778 \mathrm{~L}}=25.7 \mathrm{~mol} / \mathrm{L}
$$

$$
\begin{gathered}
\text { therefore } \\
{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\mathrm{K}\left[\mathrm{NaHCO}_{3}\right]^{2}}{\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]}=K_{C}}
\end{gathered}
$$

إذن فى حالة الأنظمه غير المتجانسه لا تعتمد على كميات المواد النقيه الصلبه أو السائله الموجوده . (أنظر الشكل التالى) :
Concentration of pure solid or liquid constant!

أكتّب معادلة ثُابت الأتزان لكل من الثّفاعلات الأتيه :

$\mathbf{2 H} \mathbf{2 d g}+\mathrm{O}_{\mathbf{2 (g)}} \rightleftharpoons \mathbf{2 H}_{\mathbf{2}} \mathrm{O}_{(\mathrm{l})}$	$\mathrm{Kc}=\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$
$\mathrm{Na}_{(\mathrm{aq})}{ }^{+1}+\mathrm{Cl}_{(\mathrm{aq})}{ }^{-1} \rightleftharpoons \mathrm{NaCl}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	$\mathrm{Kc}=\left[\mathrm{Na}^{+1}\right]\left[\mathrm{Cl}^{-1}\right]$
$\mathrm{CO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}$	$\mathrm{Kc}=\left[\mathrm{CO}_{2}\right] /\left[\mathrm{O}_{2}\right]$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{H} 2 \mathrm{O}(\mathrm{g})+\mathrm{C}(\mathrm{g})$	$\mathbf{K}_{\mathbf{c}}=\frac{\left[\mathrm{H}_{2}\right][\mathrm{CO}]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}$
$\mathrm{Cu}(\mathrm{aq})^{2+}+2 \mathrm{Ag}(\mathrm{s}) \rightleftharpoons \mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq})$	$\mathbf{K}_{\mathbf{c}}=\frac{\left[\mathbf{C u}^{2+}\right]}{\left[\mathbf{A g}^{+}\right]^{2}}$
$\mathrm{CaO}(\mathrm{g})+\mathrm{CO2}(\mathrm{~g}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathrm{~g})$	$\mathbf{K}_{\mathbf{C}}=\left[\mathrm{CO}_{2}\right]$

أمثلهه محلولـه

- أكتب ثوابت الأتزان Kp , K

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& 2 \mathrm{HI}(\mathrm{~g}) \rightleftarrows \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \\
& 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g})
\end{aligned}
$$

\[

\]

$$
\mathrm{CO}(g)+\mathrm{Cl}_{2}(g) \rightleftarrows \mathrm{COCl}_{2}(g)
$$

وجد أن التركيز ات عند الأتز ان على درجة حراره \&V مْ هـى :

Carbon monoxide $[\mathrm{CO}]=0.012 \mathrm{M}$
Molecular chlorine $\left[\mathrm{Cl}_{2}\right]=0.054 \mathrm{M}$
$\left[\mathrm{COCl}_{2}\right]=0.14 \mathrm{M}$
أحسب ثوابت الأتزان K

$$
\begin{aligned}
& \text { الحل } \\
& K_{c}=\frac{\left[\mathrm{COCl}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]}=\frac{0.14}{0.012 \times 0.054}=220 \\
& K_{p}=K_{c}(R T)^{\Delta n} \\
& \Delta n=1-2=-1 \quad R=0.0821 \quad T=273+74=347 \mathrm{~K} \\
& K_{p}=220 \times(0.0821 \times 347)^{-1}=7.7 \\
& \text { • وجد أن ثابت الأتزان للتفاعل الأتى : }
\end{aligned}
$$

$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
the equilibrium pressure of) O_{2} هو 10 عند درجة . . . 1 كلفن فماهوضغط الاتّزان

$$
\text { . } \mathrm{P}_{\mathrm{NO} 22}=0.400 \mathrm{~atm}, \mathrm{P}_{\mathrm{NO}}=0.270 \mathrm{~atm} \text { إذا علم أن } \mathbf{O}_{2}
$$

$$
\begin{gathered}
K_{p}=\frac{P_{\mathrm{NO}^{2}}^{2} P_{\mathrm{O}_{2}}}{P_{\mathrm{NO}_{2}}} \\
P_{\mathrm{O}_{2}}=K_{p} \frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{NO}}^{2}} \\
P_{\mathrm{O}_{2}}=158 \times(0.400)^{2} /(0.270)^{2}=347 \mathrm{~atm}
\end{gathered}
$$

- فى التفاعل النالى :
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftarrows \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
. لهغا التفاعل إذاعلم أن الضغط الجزئى لكال الغازين هو K , 0.265 atm K .

$$
\begin{aligned}
& \text { الحل } \\
& K_{p}=P_{\mathrm{NH}_{3}} P_{\mathrm{H}_{2} \mathrm{~S}}=0.265 \times 0.265=0.0702 \\
& K_{p}=K_{c}(R T)^{4 n} \\
& K_{c}=K_{p}(R T)^{-\Delta n} \\
& \Delta n=2-0=2 \quad T=295 \mathrm{~K} \\
& K_{c}=0.702 \times(0.0821 \times 295)^{-2}=1.20 \times 10^{-3}
\end{aligned}
$$

- يستخدم مهندسى الوقود مدى التغير من CO و الوقود التركيبى . فإذا وضع 0.250 mol مول من CO و 0.250 mol مول من H2O فى دورق سعته 125-mL على درجة حراره 900K،فماهو تركيب المخلوط عند الأتزان عند نفس درجة الحراره علماً بأن قيمة Kc هـى 1.56 لهذا التفاعل .

$$
\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \quad \rightleftharpoons \quad \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)
$$

الحل

كل التركيزات يجب أن تكون بالمول (M) لذلك

$$
[\mathrm{CO}]=\left[\mathrm{H}_{2} \mathrm{O}\right]=0.250 / 0.125 \mathrm{~L}=\mathbf{2}
$$

$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g)$	$\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$		
2.00	2.00	0	0
$-x$	$-x$	$+x$	$+x$
$2.00-x$	$2.00-x$	x	x

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\left[\mathrm{H}_{2}\right]\right.}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{(x)(x)}{(2.00-x)(2.00-x)}=\frac{(x)^{2}}{(2.00-x)^{2}} \\
& \sqrt{1.56}=\frac{x}{2.00-x}=+/-1.25 \\
& x=1.11 \mathrm{M} \\
& 2.00-x=0.89 \mathrm{M} \\
& \begin{array}{l}
{\left[\mathrm{CO}_{2}\right]=\left[\mathrm{H}_{2}\right]=1.11 \mathrm{M}} \\
{[\mathrm{CO}]=\left[\mathrm{H}_{2} \mathrm{O}\right]=0.89 \mathrm{M}}
\end{array} \\
& \text { • 12800C يكون ثابت الأتزان (Kc) للثفاعل النّالى : } \\
& \mathrm{Br}_{2}(g) \rightleftarrows 2 \mathrm{Br}(g)
\end{aligned}
$$

هو 1.1 فإذا كانت التركيزات الأوليه the initial concentrations للـ

الحل

Let x be the change in concentration of Br 2

> نتثبر أن التغيرفى تركيز Br2 هو

$$
\begin{aligned}
& \begin{array}{l}
K_{c}=\frac{(0.012+2 x)^{2}}{0.063-x}=1.1 \times 10^{-3} \\
4 x^{2}+0.048 x+0.000144=0.0000693-0.0011 x \\
4 x^{2}+0.0491 x+0.0000747=0 \\
a x^{2}+b x+c=0
\end{array} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \\
& \\
& \\
& \begin{array}{llc}
\text { Initial }(M) & \mathrm{Br}_{2}(g) & x=-0.0105 \\
\text { Change }(M) & 0.063 & 0.012 \\
\text { Chr }(g)
\end{array} \\
&
\end{aligned}
$$

Equilibrium (M) $0.063-x \quad 0.012+2 x$
At equilibrium, $[\mathrm{Br}]=0.012+2 x=-0.009 \mathrm{M}$ or 0.00844 M
At equilibrium, $\left[\mathrm{Br}_{2}\right]=0.062-x=0.0648 \mathrm{M}$

ما تأثير ارتفاع درجة الحراره على تركيز المواد التى تحتها خط وكنلك على Kc
(a) $\mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(l) \quad \mathrm{Ca}(\mathrm{OH})_{2}(a q) \Delta \mathrm{H}^{0}=-82 \mathrm{~kJ}$
(b) $\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \Delta \mathrm{H}^{0}=178 \mathrm{~kJ}$
(c) $\mathrm{SO}_{2}(g) \rightleftharpoons \mathrm{S}(s)+\mathrm{O}_{2}(g) \Delta \mathrm{H}^{0}=297 \mathrm{~kJ}$

الحل
(a) $\mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{Ca}(\mathrm{OH})_{2}(a q)+$ heat

ارتفاع درجة الحراره سوف يغير اتجاه التفاعل إلى اليسار، يخفض تركيز[Ca(OH)2] ويخفض
. Kc
(b) $\mathrm{CaCO} 3(s)$ + heat $\rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$

التفاعل سوف يتجه ألى اليمين نتيجة الأرتفاع فى [CO2] و الأرتفاع فى Kc .
(c) $\mathrm{SO}_{2}(g)+$ heat $\rightleftharpoons \mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$

التفاعل سوف يتجه ألى اليمين نتيجة الأرتفاع فى [SO2] و الأرتفاع فى Kc . - ما هو التغير الذى يحدث فى الحجم لكل من التفاعلات الأتيه لكى نزيد من محصول النواتج $!$
(a) $\mathrm{CaCO} 3(s) \quad \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
(b) $\mathrm{S}(s)+3 \mathrm{~F}_{2}(g) \quad \rightleftharpoons \quad \mathrm{SF}_{6}(g)$
(c) $\mathrm{Cl}_{2}(g)+\mathrm{I}_{2}(g) \quad \rightleftharpoons \quad 2_{\mathrm{I}} \mathrm{Cl}(g)$

الحل

عندما تتواجد الغازات فإن التغير فى حجمها سوف يؤثر على تركيز ها ، بصفه عامه عندما يتخفض الحجم (يزداد الضغط) ،فإن التفاعل سوف يتجه إلى الجهه التى بها عدد مو لات أقل والعكس
. vice versa صحيح
(a) $\mathrm{CaCO} 3(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$

CO2 هو الغاز الوحيد الموجود ولزيادة محصوله ، سوف نزيد الحجم (نخفض الضغط)
(b) $\mathrm{S}(s)+3 \mathrm{~F}_{2}(g) \quad \rightleftharpoons \quad \mathrm{SF}_{6}(g)$

نجد أن عدد المو لات الغازيه للمتفاعلات أكبر من عدد المو لات الغازيه لللنو اتج ، لذلك سوف نخفض الحجم (نزيد الضغط) كى يتغير اتجاه التفاعل لليمين .
(c) $\mathrm{Cl}_{2}(g)+\mathrm{I}_{2}(g) \quad \rightleftharpoons \quad 2 \mathrm{ICl}(g)$

فى هذه المعادله ينساوى عدد مو لات الغاز ات على جانبى المعادله ، لذلك فابن التغير فى الحجم لا . يؤثر

- لتحسين نو عبة الهواء و الحصول على منتج مفيد ، يتم غالباً إز الة الكبريت من الفحم والغاز الطبيعـن طريق معاملة كبريتيد الهيرروجين الملوث للوقود بواسطة الأكسجين كما فى

التفاعل النتالى :
${ }_{2} \mathrm{H} 2 \mathrm{~S}(g)+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightleftharpoons \quad 2 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
ماذا يحدث لـ :

الحل

عندما يختل النظام نرى أولاً المعادله الخاصه Q ونقارنها ب K لنعرف إلى أين سيتجه النفاعل

$$
\mathrm{Q}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}\left[\mathrm{O}_{2}\right]}
$$

> : O إذا إضيف

عند إضافة O2، قإن فيمة Q تنخفض ويتجه التفاعل ناحية اليمين لكى يرجع لل K ، لذلك يرتفع . $\underline{H}_{2} \underline{O} \underline{O}$
: O_{2} إذا إضيف $\left.\mathrm{H}_{2} \mathrm{~S}\right]$ •
عند إضافة O2، قإن قيمة Q تنخفض ويتجه التفاعل ناحية اليمين لكى يرجع لل K ، لذلك ينخفض
. $\underline{H}_{2} \underline{\underline{S}}$

عند إز الة H2S، قإن قيمة Q ترتفع ويتجه النفاعل ناحية اليسار لكى يرجع لل K ، للثلك ينخف
. $\underline{\mathbf{O}}_{2}$

$2 \mathrm{NOCl}(\mathrm{g}) \quad \rightleftharpoons \quad 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl} 2(\mathrm{~g})$

الحل
[NOCl$] \quad[\mathrm{NO}] \quad[\mathrm{Cl2}]$

Before	2.00	0	0
Change			
Equilibrium		0.66	
	$[\mathrm{NOCl}]$	$[\mathrm{NO}]$	$[\mathrm{Cl2}]$

Before	2.00	0	0
Change	$-\mathbf{0 . 6 6}$	$+\mathbf{0 . 6 6}$	$\mathbf{+ 0 . 3 3}$
Equilibrium	$\mathbf{1 . 3 4}$	$\mathbf{0 . 6 6}$	$\mathbf{0 . 3 3}$

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \quad \rightleftharpoons \quad 2 \mathrm{HI}(\mathrm{~g}), \mathrm{Kc}=55.3
$$

$$
\text { ، }{ }_{2}
$$

$$
\begin{array}{lccc}
& & & \\
& & K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{l}_{2}\right]}=55.3 \\
& {[\mathrm{H} 2]} & {[\mathrm{I} 2]} & {[\mathrm{HI}]} \\
& & \\
\text { Initial } & 1.00 & 1.00 & 0 \\
\text { Change } & & & \\
\text { Equilib } & & \\
& {[\mathrm{H} 2]} & {[\mathrm{I} 2]} & {[\mathrm{HI}]} \\
& & & \\
\text { Initial } & 1.00 & 1.00 & 0 \\
\text { Change } & -x & -x & +2 x \\
\text { Equilib } & 1.00-x & 1.00-x & 2 x \\
\text { Where } x \text { is defined as am't of } \mathrm{H} 2 \text { and } \mathrm{I} 2 \text { consumed on approaching } \\
\text { equilibrium } & &
\end{array}
$$

$$
\begin{gathered}
K_{c}=\frac{[H 1]^{2}}{\left[\mathrm{H}_{2}\right]\left[l_{2}\right]}=55.3 \\
K_{c}=\frac{[2 x]^{2}}{[1.00-x][1.00-x]}=55.3
\end{gathered}
$$

$$
\begin{aligned}
& 7.44=\frac{2 x}{1.00-x} \\
& x=0.79
\end{aligned}
$$

Therefore, at equilibrium
$\left[H_{2}\right]=\left[I_{2}\right]=1.00-x=0.21 \mathrm{M}$
$[\mathrm{HI}]=2 x=1.58 \mathrm{M}$

- فى التفاعل:

إذاكان التركيز الأولى ل 0.50 M M ل ، فما هـى التركيزات عند الأتزان ؟ الحل
[N2O4]
0.50
[NO2]500

Change
Equilib
[N2O4]
[NO2]

Initial	0.50	0
Change	-x	+2 x
Equilib	$0.50-\mathrm{x}$	2 x

$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=0.0059$ at 298 K
Rearrange:

$$
\begin{aligned}
& 0.0059(0.50-x)=4 x_{2} \\
& 0.0029-0.0059 x=4 \times 2 \\
& 4 x_{2}+0.0059 x-0.0029=0
\end{aligned}
$$

This is a QUADRATIC EQUATION

$$
\begin{array}{r}
a x 2+b x+c=0 \\
a=4 \quad b=0.0059 \quad c=-0.0029 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-0.0059 \pm \sqrt{(0.0059)^{2}-4(4)(-0.0029)}}{2(4)} \\
x=-0.00074 \pm 1 / 8(0.046)^{1 / 2}=-0.00074 \pm 0.027
\end{array}
$$

$$
x=0.026 \text { or }-0.028
$$

But a negative value is not reasonable.
Conclusion
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.050-\mathrm{x}=0.47 \mathrm{M}$
$\left[\mathrm{NO}_{2}\right]=2 \mathrm{x}=0.052 \mathrm{M}$

أسئلـه

- احسب قيمة ثابت الاتزان لتفاعل غاز الهياروجين مع بخار اليود لانتاج غاز يوديد : HI = الهياروجين عند • 9 ؛ درجة مئوية إذا علمت أن تركيز المواد عند الاتزان كالنتا

$$
\text { . } 1.02, \mathrm{H}_{2}=0.0862, \mathrm{I}_{2}=0.263
$$

$$
\begin{aligned}
& \text { إذا علمت أن الضغط الجزئي عند الاتزان في التفاعل التالي: } \\
& \mathrm{PCl}_{5}=\mathrm{pcl}_{3}+\mathrm{Cl}_{2}
\end{aligned}
$$

هي $\mathrm{PCl} 5=0.875 \mathrm{~atm}, \mathrm{PCl} 3=0.463 \mathrm{~atm}$: فاحسب قيمة Kp للتفاعل عند .
 وعاء عند Y Y درجة مئوي احسب الضغط الجزئي لكل غاز عند الاتزان ـ واحسب الضغ

اذا علمت أن ثابت الاتز ان للتفاعل النتلي :
${ }^{\wedge}$. \times. \times. يساوي ${ }^{\text {N }} \mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3}$
فما فيمة ثابت الاتزان للتفاعل NH3 = 1/2 N2 + 3/2 H2 عند درجة الحرارة نفسها ؟

درجة مئوي يساوي 7 .

 في تراكيز المواد (هل وصل التفاعل إلى حالة الاتزان) ؟ في أي اتجاه يحدث التناعل.

إذا ادخل rمول من يوديد الهيلروجين في و عاء حجمه واحد لتر عنـ490 درجة مئوية ، كم يكون تركيزكل نوع من المواد الموجودة في الوعاء عند الاتزان علماً بأن ثابت الاتزان للتفاعل يساوي 9.9 ؛ عند . 9 § درجة مئوية ؟

$$
\text { - في التفاعل التالي } \mathrm{SO}_{3}=2 \mathrm{SO}_{2}+\mathrm{O}_{2} \text { : }
$$

$$
\text { - في التفاعل التالي } \mathrm{SO}_{3}=2 \mathrm{SO}_{2}+\mathrm{O}_{2} \text { ف }
$$

 كمية متققية من SO ${ }^{\text {S }}$ مطلقة

